
CS242 Final
Fall 2021

• Please read all instructions (including these) carefully.

• There are 6 questions on the exam, some with multiple parts. You have 180 minutes to
work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 20
2 20
3 20
4 20
5 20
6 20

TOTAL 120

1

1. More Pi (20 points)
Recall the syntax of the π-calculus from lecture 9:

Prefixes p ::= a(x)
| āx

Agents P ::= 0
| p. P
| P + P
| P | P
| x = y ⇒ P
| x ̸= y ⇒ P
| νx P
| !P

Assume that there is a process that writes a non-negative integer i, encoded as a sequence
of i succ messages followed by one zero message, on the channel c. Write a process that
reads from c and writes the number floor(i/2) (encoded as a series of succ messages
followed by a zero message) on channel d. You may assume there is only one process that
reads from d. Do not use integer division, or any other operations not in the grammar
given above, in your solution.

2

2. Loop Invariants (20 points)
Consider the following program with the usual semantics:

// assume n ≥ 0
j := 0
i := 1
// (1)
while i ≤ n do
// (2)

j := j + i
i := i + 1

end
// (3)
assert(j = 1 + · · · + n)

Write a loop invariant for this loop and show it satisfies the following three properties:
the invariant holds initially at line (1), the invariant holds on each execution of the loop
body at line (2), and when the loop terminates, the invariant at line (3) together with the
negation of the while predicate implies the assertion.

3

3. References (20 points)
As discussed in lecture, the Simply Typed Lambda Calculus (STLC) is not Turing-complete,
as simple types do not by themselves allow for the definition of recursive functions. In this
problem, we’ll show that adding state to the STLC increases the computational power of
the STLC by enabling recursion.
We consider the STLC extended with references and integers:

e ::= x | λx: τ. e | e e | i | &e | !e | e := e

and the types:
τ ::= int | α | τ → τ | ref τ

where the type ref τ is the type of references (pointers) to τ .
Note that this language is slightly different from the untyped language we considered in
lecture 11. In particular, the new expression has been replaced by the &e expression,
which evaluates to the address of the value of e (assume that every value has such an
address if needed). The value of an assignment e1 ::= e2 is the value of e2.

(a) Types.
Give type rules (not evaluation rules!) for the &e and !e expressions.

4

(b) Backpatching is a programming technique where a forward reference is created and
then filled in with its value later. Backpatching can be used to create cyclic data
structures and recursive functions. The following example creates a non-terminating
function in the simply typed lambda calculus with references:

// The initial value of r doesn’t matter,
// except that it must have the correct type
let r = &λx: int. x in
let f = λx. (!r) x in
let z = r := &f in
f 0

This program first defines a function f that calls the function pointed to by r (the
line “let f = . . .”). Then the reference r is updated so that the function it points to
is f (the line “let z = . . .”). Finally, f is called, but all it does is call !r, which is f ,
and so it goes into an infinite loop.
Use backpatching to write a recursive function that computes n! (i.e., the factorial
of a non-negative integer n). You may assume that let a = e in e, integer constants,
e + e, e − e, e ∗ e, e == e, and if e e e are all available as primitives.
Your program should type check under the rules of the simply typed lambda calculus.
Recall that let x = e1 in e2 is syntactic sugar for (λx. e2) e1. Assume the following
types for the other primitives:

+, −, ∗ : int → int → int
== : int → int → bool

if : bool → τ → τ → τ

5

4. Set Constraints (20 points)
In lecture 15 we developed a set constraint-based analysis for the lambda calculus that
computed which syntactic lambdas an expression could evaluate to during program
execution. The lambda calculus we considered had the following constructs:

e ::= x | λx. e | e e | i

The analysis L(e) on these syntactic constructs was defined recursively as follows:

λx. e ⇒ λx. e ∈ L(λx. e)
i ⇒ i ∈ L(i)

e1 e2 ⇒ ∀λx. e ∈ L(e1) : (L(e2) ⊆ L(x) ∧ L(e) ⊆ L(e1 e2))

(a) Extending the analysis.
Suppose we extend the language definition to contain several new features, including
let expressions, if expressions, booleans, and sequencing. Concretely, consider the
lambda calculus’s syntax extended with the following constructs:

e ::= . . . | b | if e e e | let x = e in e | e; e

Extend the analysis to support these features on an expression.

b ⇒

if e1 e2 e3 ⇒

let x = e1 in e2 ⇒

e1; e2 ⇒

6

(b) Applications.
Formulating analyses as set constraints allows for the implementation of many different
(and useful) analyses within the same logical framework. One such analysis is constant
propagation, which discovers and eliminates computations that have arguments known
to be constants at compile-time. For example, a constant propagation pass could
rewrite the expression let x = 5 in x + 1 to just 6 by realizing that x can only take
the value 5. In 1–3 sentences describe how the analysis pass in part (a) can be used
to write a constant propagation pass.

7

5. Gradual Types (20 points)
The following is the syntax for a version of lambda calculus with gradual types, as in
lecture 13, augmented with integers:

e ::= x | λx: τ. e | e e | i

τ ::= ? | τ → τ | int

The type rules are given in Lecture 13, slide 27. To these rules we add integer constants,
which have type int.

(a) Write an expression that typechecks correctly, but fails with a type error at runtime.
Explain in 1–3 sentences why your example is type-correct and why it causes a
runtime error.

8

(b) In the typechecking rules for gradual typing, recall that we defined a consistency
relation (written as t1 ∼ t2). This consistency relation is used in the following typing
rule (from lecture 13):

A ⊢ e1 : t1 → t3 A ⊢ e2 : t2 t1 ∼ t2
A ⊢ e1 e2 : t3

The consistency relation is defined with the following rules (from lecture 13):
i. t ∼ t

ii. ? ∼ t

iii. t ∼ ?
iv. (t1 → t2) ∼ (t3 → t4) if and only if t1 ∼ t3 and t2 ∼ t4

Write an expression that type checks correctly, but would not type check without
rule iv. Explain your solution in 1–3 sentences.

9

6. Monads (20 points)
In this problem, we use monads from lecture 16 to keep track of the balance stored in a
bank account. This balance is represented by the following data type:

data Balance a =
Dollars a

| Bankrupt

For example, “Dollars 12” represents a bank balance of $12. If a client’s balance dips
below $0, they are considered “Bankrupt” and no further actions can be performed on the
bank account.
When implementing the following functions, you can make use of the lambda calculus,
arithmetic operators, if e e e and a case expression that pattern matches on the con-
structor of its argument:

case x of
Dollars(y) → e // evaluated if x = Dollars y, variable y is bound in e
Bankrupt → e′ // evaluated if x = Bankrupt

For example, the following use of case returns the balance as an integer or 0 if x is
“Bankrupt”:

case x of
Dollars(z) → z
Bankrupt → 0

(a) Show that Balance can be implemented using a monad. That is, implement two
functions: return and ≫= (pronounced bind). Recall from lecture the types of these
functions for a monad M : return : a → M a and bind : M a → (a → M b) → M b.

10

(b) Next, implement a function deposit : int → int → Balance int, which takes two
arguments representing the number of dollars to deposit and the existing dollar
value of a bank account, in that order. The function returns a Balance value that
represents the state of the account after making the deposit. Note that deposits can
be negative. A negative deposit signifies a withdrawal. If a (negative) deposit would
cause the account value to dip below 0, return Bankrupt.

deposit = λx. λy.

(c) Use return, ≫=, and deposit to write a function that takes an initial account value
n and three deposit values x, y, and z and returns the Balance of the account after
making the three deposits. Note that if, at any point, the balance dips below 0, the
function should return Bankrupt and any remaining operations have no effect on the
account.

λn. λx. λy. λz.

11

