
CS242 Final
Fall 2022

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam, some with multiple parts. You have 180 minutes to
work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 20
2 25
3 20
4 30
5 15

TOTAL 110

1

1. π-Calculus (20 points)

Consider the following version of the π-calculus:

Prefixes p ::= a(x)
| āx
| print(x)

Agents P ::= 0
| p. P
| P + P
| P | P
| x = y ⇒ P
| x ̸= y ⇒ P
| νx P
| !P

This syntax is identical to Lecture 13, except for the addition of a print(x) prefix that
prints the value of x.

(a) Consider the following π-calculus program:

νc (
(c 1. c 2. 0) |
(c 3. c 4. 0) |
!(c(v). print(v). 0))

Show all possible printed outcomes for this program.

(b) Consider the following π-calculus program:

νc1 νc2 νc3 (
(c1 2. c2(_). c3 1. 0) |
(c1(_). c2 1. c3 2. 0) |
c3(x). print(x). 0)

Show all possible printed outcomes for this program.

2

(c) Consider the following π-calculus program:

νc1 νc2 νc3 (
(c1 2. c2(_). c3 1. 0) |
(c2 1. c1(_). c3 2. 0) |
c3(x). print(x). 0)

Show all possible printed outcomes for this program.

3

2. State (25 points)

Recall the syntax of the λ-calculus extended with state from lecture 9:

e ::= x | λx. e | e e | i | new | !e | e := e | let x = e in e

In this problem, we extend the syntax with pairs:

e ::= . . . | ⟨e, e⟩ | e.l | e.r

The following questions ask you to define the semantics of pairs. Your answers should
use the “big step” structural operational semantics style of Lecture 9. (In some of the
homeworks, particularly HW8, we used a variation called “small step” semantics.)
As a reminder, the structural operational semantics for the λ-calculus with state defines the
judgement E, S ⊢ e → e′, S ′, where E is the lexical context that binds the free variables
of e to values, S is the initial state, e′ is the result of the evaluation of e and S ′ is the
resulting state after evaluation.

(a) Define operational semantics for e.l. Your rule should have the following behavior:
when the expression e evaluates to the value ⟨v1, v2⟩, then e.l should evaluate to v1.

(b) Define operational semantics for e.r. Your rule should have the following behavior:
when the expression e evaluates to the value ⟨v1, v2⟩, then e.r should evaluate to v2.

4

(c) Give an operational semantics rule for the evaluation of ⟨e1, e2⟩. Your rule should
have the following behavior: when the expression e1 evaluates to v1 and the expression
e2 evaluates to v2. then ⟨e1, e2⟩ should evaluate to a pair of v1 and v2. There are two
possible orders of evaluation; show a rule for each.
Rule 1:

Rule 2:

(d) Does the order of evaluation of pairs matter to the final value? If it does matter, give
an example program where the output is different using different orders of evaluation.
If it does not matter, explain clearly in one or two sentences why not.

5

3. Dependent Types (20 points)

Consider the following λ-calculus with dependent types:

e ::= x | λx: t. e | e e | ⟨e, e⟩ | case e: (γ ∨ δ) of λx: γ. e, λx: δ. e

This language is missing some constructs (like the deconstructors for pairs); the missing
features are not needed to answer this question.
The dependent types t are given by the grammar:

t ::= α | t → t | t ∧ t | t ∨ t | ∀α. t | Type

The material for this question is covered in Lecture 14. The essential items from that
lecture that you need for this problem are

• The type for a pair ⟨e1, e2⟩ is t1 ∧ t2, where e1 : t1 and e2 : t2.
• The value of

case e0: (γ ∨ δ) of λx: γ. e1, λx: δ. e2

is
– (λx: γ. e1) e0 if e0 : γ, and
– (λx: δ. e2) e0 if e0 : δ.

• In the dependently-typed λ-calculus, a polymorphic type ∀α. t is the type of functions
that take a type argument α and return a value of type t.

For each of the following types, write an expression in the dependently-typed λ-calculus
that has that type.

(a) α → β → α

(b) α → β → α ∧ β

6

(c) ∀γ. γ → γ

(d) (α → γ) → (β → γ) → (α ∨ β) → γ

7

4. Continuations (30 points)

(a) CPS transformation
Consider the λ-calculus extended with Boolean values and conditionals:

e ::= x | e e | λx. e | true | false | if e then e else e

In this language, true and false are primitive values rather than Church encodings.
Given an environment E binding free variables in an expression to values, the
operational semantics for conditionals are:

E ⊢ e1 → true E ⊢ e2 → v
E ⊢ if e1 then e2 else e3 → v

[If-True] E ⊢ e1 → false E ⊢ e3 → v
E ⊢ if e1 then e2 else e3 → v

[If-False]

Recall the CPS transformation for λ-calculus covered in Lecture 11:

C(λx. e, k) = k (λk′. λx. C(e, k′)),
C(e e′, k) = C(e, λf. C(e′, λv. f k v)),

C(x, k) = k x.

Write the CPS transformation rules for the new expressions. To avoid wasted work,
make sure that your implementation of if expressions only evaluates one branch –
either e2 or e3.

C(true, k) =

C(false, k) =

C(if e1 then e2 else e3, k) =

8

(b) While loop
We want to implement a while loop in Racket using using call/cc. Given two
functions cond and body, the function call (while cond body) should repeatedly
evaluate cond and, if the result of cond is true, then evaluate body. The loop
terminates if cond evaluates to false. The return value of while can be any value.
As an example, running the first loop below prints “test” exactly four times. The
second loop produces no output, since the condition is always false. Equivalent
code in Python is included for reference.

(define i 0) ; i = 0
(while (lambda () (< i 4)) ; while i < 4:

(lambda () ;
(printf "test\n") ; print("test")
(set! i (+ i 1)))) ; i = i + 1

(while (lambda () #f) ; while False:
(lambda () ;

(printf "unreached\n"))) ; print("unreached")

For each implementation below, determine if it correctly implements while. If the
implementation is correct, explain in no more than three sentences how it works. If
the implementation is incorrect, give any example while loop of no more than five
lines that doesn’t work correctly and explain in no more than two sentences what
goes wrong.

i. (call/cc (lambda (k)
(body)
(if (cond)

(k)
#f)))

9

ii. (define cont 0)
(if (cond)

(begin
(call/cc (lambda (k) (set! cont k)))
(body)
(cont))

#f)

10

5. Type State (15 points)
In the game tic-tac-toe, two players take turns placing symbols on a 3×3 board. One
player always places the character X, while the other always places the character O. Assume
that X always goes first at the start of the game.
A player wins if they are able to place three of their respective characters in consecutive
locations either vertically, horizontally, or diagonally. The game can also end in a draw if
all locations in the grid are filled without a winner.
Below are examples of game states ending in an X win, an O win, and a draw, respectively.

X O O
X

X

O X
O X X
O

X X O
O X X
X O O

Suppose that you are implementing an API to play a game of tic-tac-toe with a friend. Your
friend proposes the following design, representing the game through a TicTacToeBoard
object:

• CreateTicTacToeBoard() → TicTacToeBoard: Constructor to create a new game
board.

• placeX(row: uint8, col: uint8) → bool: Place an X at the given location and
return true if the game is over, or false otherwise.

• placeO(row: uint8, col: uint8) → bool: Place an O at the given location and
return true if the game is over, or false otherwise.
To simplify the problem, we ignore the differences between X winning, O winning, and
a draw.

• clearBoard(): Clear the board and start a new game.

However, you have some concerns about this interface. A dishonest opponent might try
to call placeX or placeO out of turn to make multiple moves in a row. In addition, they
may decide to call clearBoard out of spite to end the game early.
Fortunately, you’ve taken CS 242 and learned how to use type state (Lecture 10) to
enforce the rules of the game. Give a type state machine diagram that satisfies the
following requirements:

• The transitions between states in your design are only CreateTicTacToeBoard,
clearBoard, placeX[true] (which means placeX returned true), placeX[false],
placeO[true], and placeO[false].

• placeX[...] should only be possible if it is player X’s turn, and placeO[...]
should only be possible if it is player O’s turn.

• Clients should only be able to clear the board once the game is over.

Note that the problem is only to give the type state machine diagram, not to give code
that implements tic-tac-toe.

11

(your problem 5 answer goes here)

12

