
CS242 Midterm
Fall 2023

• Please read all instructions (including these) carefully.

• There are 4 questions on the exam, some with multiple parts. You have 80 minutes to
work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively simple
and straightforward solution. You may get as few as 0 points for a question if your solution
is far more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 28
2 12
3 20
4 20

TOTAL 80

1

1. Lambda Calculus (28 points)

Recall that we can represent a list (List) of natural numbers (Nat) using the algebraic
datatypes

type List = Nil | Cons Nat List
type Nat = Succ Nat | 0

For all parts of this problem, you may use the following definitions in your solutions:

cons = λh. λt. λx. λf. f h (t x f)
nil = λx. λf. x

_0 = λf. λx. x

succ = λn. λf. λx. f (n f x)
tt = λt. λf. t

ff = λt. λf. f

pair = λx. λy. λz. z x y

fst = λx. λy. x (note: should be applied postfix, i.e., (pair x y) fst)
snd = λx. λy. y (note: should be applied postfix, i.e., (pair x y) snd)

For each subproblem below, you may also use the functions asked about in earlier sub-
problems, even if you did not answer the earlier subproblem. For example, you may use
isempty in your solutions to parts (b), (c) and (d) even if you do not answer part (a).
Implement the following functions in lambda calculus:

(a) isempty: takes a list l and returns tt if l is empty otherwise returns ff,
e.g., isempty([]) = tt and isempty([1, 2]) = ff. (5 points)

isempty = λl. l tt (λh. λr. ff)

(b) len: takes a list l and returns the number of elements in the list,
e.g., len([1, 2, 1]) = 3. (7 points)

len = λl. l _0 (λh. λr. succ r)

2

The function definitions from the previous page are repeated here for your conve-
nience:

cons = λh. λt. λx. λf. f h (t x f)
nil = λx. λf. x

_0 = λf. λx. x

succ = λn. λf. λx. f (n f x)
tt = λt. λf. t

ff = λt. λf. f

pair = λx. λy. λz. z x y

fst = λx. λy. x (note: should be applied postfix, i.e., (pair x y) fst)
snd = λx. λy. y (note: should be applied postfix, i.e., (pair x y) snd)

(c) dupl: takes a list l and returns a list with every element of l duplicated, e.g.,
dupl([1, 2, 3]) = [1, 1, 2, 2, 3, 3]. (7 points)

dupl = λl. l nil λh. λt. cons h (cons h t)

(d) tail: takes a list l and returns l excluding the first element of the list (unless
l = nil, in which case it returns nil), e.g., tail([1, 2, 3, 4]) = [2, 3, 4] and
tail([]) = []. (9 points)

tail = λl.
(l (pair nil nil)

(λh. λr. pair h ((isempty (r fst)) nil (cons (r fst) (r snd))))) snd

3

2. Evaluation Order (12 points)
Define the following functions:

cons = λh. λt. λx. λf. f h (t x f)
nil = λx. λf. x

_0 = λf. λx. x

succ = λn. λf. λx. f (n f x)
head = λl. l nil (λh. λt. h)
add = λn. λm. n succ m

mul = λn. λm. n (add m) _0
sum = λl. l _0 add

prod = λl. l (succ _0) mul
zeros = ((λs. cons _0 (s s)) (λs. cons _0 (s s)))

Recall from lecture that given a reducible expression (λx. e) e′, “call-by-name” first per-
forms beta reduction (i.e., (λx. e) e′ → e[x := e′]) and then evaluates e′, while “call-by-
value” first evaluates e′ and then performs beta reduction.
For each of the following expressions and evaluation orders, state either that the program
does not terminate (write “nonterminating”) or state what the program evaluates to:

(a) call-by-value, head zeros (2 points)

head zeros → nonterminating

(b) call-by-name, head zeros (2 points)

head zeros → _0

(c) call-by-value, sum zeros (2 points)

sum zeros → nonterminating

(d) call-by-name, sum zeros (2 points)

sum zeros → nonterminating

(e) call-by-value, prod zeros (2 points)

prod zeros → nonterminating

(f) call-by-name, prod zeros (2 points)

prod zeros → _0

4

3. Algebraic Data Types (20 points)
A 2-3 tree with integer values has the following algebraic data type definition:

TTTree =
Leaf |
Two(TTTree,TTTree,Int) |
Three(TTTree,TTTree,TTTree,Int,Int)

The full definition of 2-3 trees also has some balance conditions on the height of sibling
subtrees, which we ignore for this problem. Give the implementation of 2-3 trees in the
lambda calculus using the encoding of algebraic data types introduced in Lecture 4. Write
the lambda term for each constructor below:

(a) (6 points)

Leaf = λl.λf.λg.l

(b) (7 points)

Two = λx.λy.λi.λl.λf.λg.f (x l f g) (y l f g) i

(c) (7 points)

Three = λx.λy.λz.λi.λj.λl.λf.λg.g (x l f g) (y l f g) (z l f g) i j

5

4. Type Polymorphism (20 points)

We can write the S, K, and I combinators in lambda calculus and assign them the following
simple types:

I : a → a

K : b → (c → b)
S : (d → (e → f)) → (d → e) → d → f

For each of the following expressions give the type (up to alpha-renaming of type variables)
that would be inferred for the simply typed lambda calculus (the algorithm given in
Lecture 5). If no type can be inferred, write untypable — no justification is required.

(a) (5 points)

S I : ((e → f) → e) → (e → f) → f

(b) (5 points)

S K : (b → c) → b → b

(c) (5 points)

S K I : a → a

(d) (5 points)

S I I : untypable

6

