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Haskell
Basics
Functions

A Haskell program is made up of a series of function definitions. To define a function, at the top level of the
file we state the function name, any arguments, and the result of the function. Note that all functions must
have a result, i.e., there are no void functions. For example, to define a function called dup'1 that takes a
single element and returns a 2-tuple of that element, we would write
dup' x = (x, x)

Function application is done by juxtaposition, e.g.,
1The ' in dup' is part of the function name and has no special meaning. In other code a a trailing apostrophe will often be

used to avoid any conflicts with preexisting function names. However, since I’ve told Haskell to only import a small piece of the
standard library, in this document we will not need to include apostrophes.
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dup' "hi"
("hi","hi")

Binary functions can also be applied infix using backticks:
myBinaryFunction x y = x + y

1 `myBinaryFunction` 2
3

Haskell is a strongly-typed language, but Haskell’s type inference is powerful enough that you frequently
do not need to explicit add type annotations. For example, in ghci we can ask for the inferred type of an
expression using :type, e.g.,
:type (dup' "hi")
(dup' "hi") :: (String, String)

where :: should be read as “has type”. To avoid ambiguity and increase readability, functions in Haskell are
frequently annotated with their types, e.g.,
dup' :: String -> (String, String)
dup' x = (x, x)

where a -> b denotes the type of a function from a type a to a type b.

As we have already seen, Haskell also has tuple types, denoted with surrounding parentheses and elements
separated by commas, e.g.,
myTwoTuple :: (String, String)
myTwoTuple = ("hello", "world")

myThreeTuple :: (String, String, String)
myThreeTuple = ("hello", "world", "!")

Note that tuples of different lengths have different types, e.g.,
myTwoTuple == myThreeTuple
<interactive>:71:15: error:

Couldn't match expected type: (String, String)
with actual type: (String, String, String)

In the second argument of (==), namely myThreeTuple
In the expression: myTwoTuple == myThreeTuple
In an equation for it: it = myTwoTuple == myThreeTuple

There even exist tuples with zero elements, e.g.,
myZeroTuple :: ()
myZeroTuple = ()

Zero-length tuples are useful because there is only one valid value of type (): (), a.k.a. unit. As such,
returning a value of type () from a function is essentially equivalent to returning nothing, as the value
returned is always the same, i.e., (). Thus, () is the closest Haskell has to the void return type in C/C++.

To access the elements of a tuple, we can use “pattern matching”—in a function’s parameter list, instead of
listing variables names we can instead list the “shapes” of the variables with variable names for each piece,
e.g.,
swap :: (Int, Char) -> (Char, Int)
swap (l, r) = (r, l)

To ignore a piece of an argument, we can instead give it the name _, e.g.,2

2Unlike Python where _ is just a variable name like any other, in Haskell _ has special meaning. Don’t expect it to work like
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fst :: (Int, Char) -> Int
fst (l, _) = l

We can define anonymous functions (i.e., lambdas) through the notation \arg0 arg1 ... -> body, e.g.,
fst :: (Int, Char) -> Int
fst = (\(l, _) -> l)

As show above lambdas also support pattern matching. We can also see that listing all of a function’s
parameters is unnecessary, as long as the function type works out correctly.

Haskell also allows us to define custom operators similar to how we define functions, e.g.,
(>#<) :: Int -> Int -> Int
(>#<) l r = l + 2 * r

1 >#< 2
5

Temporary Variables

In more complex functions, it can be convenient to introduce additional temporary variables. In Haskell we
can do this either via let-in, e.g.,
sum3 :: (Int, Int, Int) -> Int
sum3 (x, y, z) = let intermediate = x + y

in intermediate + z

or via a where clause, e.g.,
sum3' :: (Int, Int, Int) -> Int
sum3' (x, y, z) = intermediate + z

where
intermediate :: Int
intermediate = x + y

Note that variables in Haskell are immutable, so we can’t reassign them in a let or where, e.g.,
sum4 :: (Int, Int, Int, Int) -> Int
sum4 (w, x, y, z) = let intermediate = w + x

intermediate = intermediate + y
in intermediate + z

<interactive>:110:25: error:
Conflicting definitions for intermediate
Bound at: <interactive>:110:25-36

<interactive>:111:25-36

so we would instead have to assign them different names, e.g.,
sum4' :: (Int, Int, Int, Int) -> Int
sum4' (w, x, y, z) = let intermediate = w + x

intermediate' = intermediate + y
in intermediate' + z

In fact, all values in Haskell are immutable. For example, to increment a number in a tuple we create a new
tuple with the new value, but leave the old tuple unmodified, e.g.,
incFst :: (Int, Int) -> (Int, Int)
incFst (l, r) = (l + 1, r)

exampleTuple :: (Int, Int)
exampleTuple = (3, 5)

a normal variable!
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incFst exampleTuple
(4,5)

exampleTuple
(3,5)

Control Flow

Instead of while and for loops we have recursion:
fibonacci :: Int -> Int
fibonacci 0 = 1
fibonacci 1 = 1
fibonacci n = fibonacci (n - 1) + fibonacci (n - 2)

fibonacci 4
5

We do, however, have conditionals in the form of if:
if (1 + 1 == 2) then "math works" else "um..."
"math works"

and case (which performs pattern matching, similar to functions):
isEven :: Int -> Bool
isEven 0 = True
isEven n = isOdd (n - 1)

isOdd :: Int -> Bool
isOdd 0 = False
isOdd n = isEven (n - 1)

exampleNum :: Int
exampleNum = 3

case (isEven exampleNum, isOdd exampleNum) of
(True, False) -> "math works! it's even"
(False, True) -> "math works! it's odd"
_ -> "um..."

"math works! it's odd"

Note that because every expression must have a value, every if must have both a then and an else branch.

Algebraic Data Types

Haskell supports algebraic data types (ADTs), which are analogous to the combination of C’s struct and
union:
data TwoOrThree = Two Int Int | Three Int Int Int

Here we declare a new type TwoOrThree which has two type constructors: Two and Three, analogous to the
following C code:
#include <stdbool.h>

union _TwoOrThree {
bool isTwo;
struct {
int field1;
int field2;

} asTwo;
struct {
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int field1;
int field2;
int field3;

} asThree;
};

typedef union _TwoOrThree TwoOrThree;

TwoOrThree Two(int arg1, int arg2) {
TwoOrThree toReturn;
toReturn.isTwo = true;
toReturn.asTwo.field1 = arg1;
toReturn.asTwo.field2 = arg2;
return toReturn;

}

TwoOrThree Three(int arg1, int arg2, int arg3) {
TwoOrThree toReturn;
toReturn.isTwo = false;
toReturn.asThree.field1 = arg1;
toReturn.asThree.field2 = arg2;
toReturn.asThree.field3 = arg3;
return toReturn;

}

Two takes two values of type Int and returns a value of TwoOrThree, e.g.,
:type Two
Two :: Int -> Int -> TwoOrThree

and Three takes three values of type Int, and also returns a value of TwoOrThree, e.g.,
:type Three
Three :: Int -> Int -> Int -> TwoOrThree

Since both Two and Three produce a value of type TwoOrThree, if we are given a value of type TwoOrThree we
don’t know how many fields it has: if it was constructed via Two then it has two Int fields, and if it was
constructed by Three then it has three. To determine which is the case, we can use pattern matching to take
a value of type TwoOrThree and determine which constructor was used:
sumTwoOrThree :: TwoOrThree -> Int
sumTwoOrThree (Two x y) = x + y
sumTwoOrThree (Three x y z) = x + y + z

which is equivalent to the C code
int sumTwoOrThree(TwoOrThree arg) {

if (arg.isTwo) {
return arg.asTwo.field1 + arg.asTwo.field2;

} else {
return arg.asThree.field1 + arg.asThree.field2 + arg.asThree.field3;

}
}

We can also define recursive data types: for example, to define our own list datatype
data MyList = EmptyList | Cons Int MyList

sumMyList :: MyList -> Int
sumMyList EmptyList = 0
sumMyList (Cons myHead myTail) = myHead + sumMyList myTail

sumMyList (Cons 1 (Cons 3 (Cons 2 EmptyList)))
6
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In fact, this is exactly how Haskell defines lists, just with EmptyList replaced by the symbol [] and Cons
replaced by the symbol :, e.g.,
myListToHaskellList :: MyList -> [Int]
myListToHaskellList EmptyList = []
myListToHaskellList (Cons myHead myTail) =

myHead : (myListToHaskellList myTail)

myListToHaskellList (Cons 1 (Cons 3 (Cons 2 EmptyList)))
[1,3,2]

Note that type constructors can have the same name as their result type, e.g.,
data IntWrapper = IntWrapper Int

Type Aliases

You can declare an alias of a type using the type keyword, e.g.,
type Temperature = Int

Note that Temperature is not a wrapper for Int, Temperature is Int, e.g.,
myTemperature :: Temperature
myTemperature = 78

myInt :: Int
myInt = 78

myInt == myTemperature
True

Thus type aliases should be used to improve readability, not to improve type safety.

Function Composition & Partial Application

As a functional language, one of the most important operations in Haskell is function composition. In Haskell
this is most commonly done by the operator ., which is equivalent to the standard ◦ operator in mathematics.
Note that function composition here is performed right-to-left, not left-to-right, e.g.,
f :: String -> String
f s = "f(" ++ s ++ ")"

g :: String -> String
g s = "g(" ++ s ++ ")"

x :: String
x = "x"

(f . g) x
"f(g(x))"

This is convenient in that when applied the ordering of variables remains the same (i.e., left-to-right f, g, x).

Haskell performs partial application (e.g., currying) of functions by default, e.g.,
myAdd :: Int -> Int -> Int
myAdd l r = l + r

:type (myAdd 1)
(myAdd 1) :: Int -> Int

Here, applying a function that takes two parameters to a single parameter returns a function with one
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parameter filled and the other one still waiting to be filled (thus the change from signatuere Int -> Int -> Int
to Int -> Int). In most other languges, for example Python, the above would instead result in an error:
def myAdd(l: int, r: int) -> int:

return l + r

myAdd(1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: myAdd() missing 1 required positional argument: 'r'

Note that this implies that we can interpret a Haskell function signature in multiple ways: for example, we
can read Int -> Int -> Int as “a function that takes two Ints and returns an Int”, but we can also read
it as “a function that takes an Int and returns a function of type Int -> Int, as we saw above in the case
of myAdd. Thus, the type signature Int -> Int -> Int is equivalent to Int -> (Int -> Int), indicating that
the -> operator is right-associative3. Thus, the following type signatures are equivalent:4

parenExample1 ::
Int -> Int -> (((Int -> Int) -> Int) -> Int -> Int)

parenExample1 = undefined

parenExample2
:: Int -> Int -> ((Int -> Int) -> Int) -> Int -> Int

parenExample2 = undefined

parenExample3
:: (Int -> (Int -> (((Int -> Int) -> Int) -> (Int -> Int))))

parenExample3 = undefined

:type parenExample1
parenExample1 :: Int -> Int -> ((Int -> Int) -> Int) -> Int -> Int

:type parenExample2
parenExample2 :: Int -> Int -> ((Int -> Int) -> Int) -> Int -> Int

:type parenExample2
parenExample2 :: Int -> Int -> ((Int -> Int) -> Int) -> Int -> Int

Polymorphism
Like the polymorphic lambda calculus covered in lecture 4, Haskell supports universally quantified types.
For example, in the polymorphic lambda calculus the identity function id = λx. x has type id: ∀x. x → x.
Similarly, in Haskell we can write
id :: forall x. x -> x
id v = v

In Haskell foralls are automatically inserted by the compiler for any undefined type variables in a top-level
type declaration, so we can also write
id :: x -> x
id v = v

Haskell also supports polymorphic data types: for example, to define a generic list type,
data MyGenericList e = GenericCons e (MyGenericList e)

3A binary operation (•) is right-associative if a • b • c == a • (b • c). A common example is assignment in C: a = b = c can
be read as “set b’s value to c, and then set a’s value to the result of b = c”, i.e., a = (b = c). In contrast, subtraction is
left-associative: a − b − c = (a − b) − c.

4undefined is a special value in Haskell that has all types, and so can be substituted for any expression without violating
typechecking. Here we use it as the implementations of parenExample1, parenExample2, and parenExample3 are irrelevant
to the example. If encountered at runtime undefined will cause the executable to exit with an error message.
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| GenericEmptyList

myStringList = (GenericCons "hello"
(GenericCons "world"
(GenericCons "!"

GenericEmptyList)))

:type myStringList
myStringList :: MyGenericList String

myBoolList = (GenericCons True
(GenericCons False

GenericEmptyList))

:type myBoolList
myBoolList :: MyGenericList Bool

myGenericHead :: MyGenericList e -> e
myGenericHead (GenericCons h _) = h
myGenericHead GenericEmptyList = error "Cannot take head of empty list"

myGenericHead myStringList
"hello"

myGenericHead myBoolList
True

Note that just as in the polymorphically typed lambda calculus, the type of polymorphism here is parametric
polymorphism: if a function f is quantified over a type variable t, then f must behave exactly the same
(equivalently, f’s implementation may make no assumptions about t) for any type. Thus, using the features
discussed so far it is be impossible to define a join function that works for all element types, e.g.,
genericJoin :: MyGenericList e -> e
genericJoin (GenericCons head tail) = head ++ (genericJoin tail)
<interactive>:295:39: error:

Couldn't match expected type e with actual type [a0]
e is a rigid type variable bound by

the type signature for:
genericJoin :: forall e. MyGenericList e -> e

at <interactive>:294:1-35
In the expression: head ++ (genericJoin tail)
In an equation for genericJoin:

genericJoin (GenericCons head tail) = head ++ (genericJoin tail)
Relevant bindings include

tail :: MyGenericList e (bound at <interactive>:295:31)
head :: e (bound at <interactive>:295:26)
genericJoin :: MyGenericList e -> e (bound at <interactive>:295:1)

We’ll discuss more expressive forms of polymorphism later in the lecture (here and here).

Laziness & Purity
Unlike most other languages, Haskell uses lazy semantics, a.k.a. normal order, a.k.a. call-by-name, instead
of the more commonly used strict semantics, a.k.a. eager evaluation, a.k.a. call-by-value.5 This means
that Haskell only evaluates expressions that are needed to compute the program result, which allows easy
computation over infinite data structures, e.g.,
myInfiniteList :: [Int]
myInfiniteList = 0 : myInfiniteList

myHead :: [Int] -> Int

5See lecture 3 for the definition of these terms
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myHead (h:_) = h
myHead _ = error "Cannot take head of empty list"

myHead myInfiniteList
0

or even
myProduct :: Int -> Int -> Int
myProduct 0 _ = 0
myProduct _ 0 = 0
myProduct l r = r + myProduct (l-1) r

myListProduct :: [Int] -> Int
myListProduct (head:tail) = myProduct head (myListProduct tail)
myListProduct [] = 1

myListProduct myInfiniteList
0

In both of these cases we are able to evaluate the given function (i.e., myHead and myListProduct) over the
infinite list myInfiniteList because they only need to know the head of the list to return the value.6 In
strict languages (e.g., Python, C, Java, and almost every other language you’ve used) the evaluation order
would require that the arguments to myHead (or myListProduct) be evaluated before evaluating myHead (or
myListProduct), and since myInfiniteList recurses infinitely an equivalent program in a strict language would
never terminate.

While lazy evaluation has the advantage of being “more terminating”7 than strict evaluation, it complicates
the program’s IO behavior. For example, consider the following program in pseudo-Haskell syntax:
myfunc = \x -> (print x; x)
result = 0 * myfunc 1

where ; denotes sequential execution8. Interpreted in strict semantics, we’ll get the following reduction steps:
0 * myfunc 1 [ stdout: "" ]

-> 0 * 1 [ stdout: "1" ]
-> 0 [ stdout: "1" ]

as expected. However, in lazy semantics something surprising occurs:
0 * myfunc 1 [ stdout: "" ]

-> 0 [ stdout: "" ]

In lazy semantics, since the result of myfunc 1 is not needed to determine the value of result our print
statement is never evaluated! Similar issues would occur if instead of print we modified a global variable, or
wrote to a pointer, or interacted with a file, or any other computation with a side effect. While technically
well-defined, this behavior makes it very difficult to write correct programs that perform side effects. To
avoid this issue, Haskell chooses the “nuclear option”: it bans side effects altogether (a.k.a., requires that all
code is pure).9

Monads
Clearly banning all side effects is not tenable: while theoretically convenient, a language that is unable to
interact with the environment is near-useless. Thus, we’ll have to come up with a way to emulate effectful
programs in a pure language. The core of the issue is sequencing: given a set of value computations and a set
of side effects, in a lazy language the relation between the computation steps and the ordering of side effects

6For myListProduct of course this only holds if the head of the list is 0: in general myListProduct will only terminate on
lists where that either (1) have a finite length, or (2) have a 0 element within a prefix list of finite length.

7See lecture 3 for the definition of these terms
8i.e., l; r should be read as “execute l, wait for l to complete, and then execute r”
9This is admittedly an oversimplification. Keep reading for the full story.
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is in general unclear. Fortunately, in lecture 9 we covered a mathematical construct that gives us exactly this
feature: monads.

Monad Lecture Recap
The following is a brief recap of the relevant parts of lecture 9. For more information, see the lecture 9 slides.

Recall that a monad is a type polymorphic over a single type variable, combined with two corresponding
operations (which are different for each monad): bind (often denoted by >>=) and return. return lifts a
standard Haskell value to a monadic value while bind allows us to sequentially compose monads. More
precisely, for any monad m, return and bind have the following type signatures:
return :: a -> m a
bind :: m a -> (a -> m b) -> m b

bind’s signature provides some useful insight into its behavior: since bind is polymorphic over a and b, at
the very least bind must unwrap the first argument (transforming the m a into an a) and then pass the
unwrapped a into the second argument (a -> m b), yielding a value of type m b. This is one of bind’s two
main contributions: unwrapping. The second is sequencing: to understand, let’s consider the following:
data M a -- declare a type M but ignore its constructors

return :: a -> M a
return = undefined

bind :: M a -> (a -> M b) -> M b
bind = undefined

data A
data B
data C

action1 :: A -> m B
action1 = undefined

action2 :: B -> m C
action2 = undefined

(>=>) :: (a -> M b) -> (b -> M c) -> (a -> M c)
(>=>) f g = (\initialValue -> ((return initialValue) `bind` f) `bind` g)

As we can see, using bind and return give us a way to compose two monadic actions together, and since
the only way a b can be generated is by running f and then unwrapped using bind, this guarantees that
f >=> g will first run f and then run g regardless of what f and g are. Even if f and g don’t use their input
arguments, as was the issue in our initial version of print, we have to have evaluated f before we start on g.

Of course, sequential programs have a few other expected semantics, e.g.,
{

stmt1;
stmt2;
stmt3;

}

should be equivalent to both
{

stmt1;
{
stmt2;
stmt3;

}
}

and

10
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{
{
stmt1;
stmt2;

}
stmt3;

}

In other words, sequential composition should be associative. In addition, we would expect
{

stmt;
}

to be equivalent to both
{

;
stmt;

}

and
{

stmt;
;

}

These conditions cannot be derived from the types of bind and return, and so to be a valid monad some
other monad laws must be satisfied:

1. ((stmt1 >=> stmt2) >=> stmt3) ≡ (stmt1 >=> (stmt2 >=> stmt3))
2. (return >=> stmt) ≡ (stmt >=> return) >=> stmt

Looking closely, we can see that these correspond to the expected semantics of sequential composition above.

Finally, we expect that any side effects in our sequential program are implicit, e.g., we would do
{

void *x, *y, *z;

*x = f();
*y = g();
*z = h();

}

and expect that *x, *y, and *z can be accessed from within f, g, and h even though we don’t explicitly pass
them in. More concretely, a sequential program should not require us to explicitly pass in all past results à la
{

void *x, *y, *z;

*x = f();
*y = g(x);
*z = h(x, y);

}

This “implicit” dataflow is reflected in the type signature of bind:
(>>=) :: m a -> (a -> m b) -> m b

If we read m a as “an effectful program producing a value of type a”, then we can see that the the “step”
function (the second argument, typed a -> m b) can produce effects (the output type m b), but sees only the
result of the previous effectful program (the input type a) and, critically, is not explicitly passed any of the
previous program’s effects. Instead, composing the two sets of side effects hidden away in the m a and the m b
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resulting from the “step” function is the responsibility of bind. Thus, every step in our monadic program
does not worry about explicitly “passing on” the effects to the rest of the program—this is all implicitly done
by bind!

Implementing Monads w/ Parameteric Polymorphism
By now you should have a sense of how monads allow us to emulate the expected semantics of effectful
programs, but it’s not immediately clear how we can implement them in Haskell in a convenient way.
Parametric polymorphism currently prevents us from implementing any generic monad operations such as >>=,
return , and >=>, as these rely on performing different bind and return operations based on which monad
they are called on. Thus, in our current implementation, for any two monads M1 and M2 we’d have to do the
following
data M1 a
data M2 a

bindM1 :: M1 a -> (a -> M1 b) -> M1 b
bindM1 = undefined

returnM1 :: a -> M1 a
returnM1 = undefined

bindM2 :: M2 a -> (a -> M2 b) -> M2 b
bindM2 = undefined

returnM2 :: a -> M2 a
returnM2 = undefined

sequenceM1 :: (a -> M1 b) -> (b -> M1 c) -> (a -> M1 c)
sequenceM1 f g = \initial -> (((returnM1 initial) `bindM1` f) `bindM1` g)

sequenceM2 :: (a -> M2 b) -> (b -> M2 c) -> (a -> M2 c)
sequenceM2 f g = \initial -> (((returnM2 initial) `bindM2` f) `bindM2` g)

-- ... and on and on for each generic monad operation ...

There exist a number of other sequential constructs that we’d like to implement which are generic with
respect to the underlying monad (e.g., while loops, for loops, conditionals), but currently if we have n monads
and m monadic operations we need to define n × m different functions, which quickly becomes cumbersome.

Implementing Monads w/ Virtual Tables
Our ideal implementation of monads would look similar to inheritance in object-oriented languages (in general
this form of polymorphism is called ad-hoc polymorphism). For example, in C++ we’d have something like
template <template A>
struct Monad {

virtual void monadReturn(
A,
Monad<A> *out

) = 0;

template <typename A, typename B>
virtual void monadBind(

Monad<A> *,
void (*)(A, Monad<B>*),
Monad<B> *out

) = 0;
};

template <typename A>
struct MyMonadType : Monad {

// ...
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virtual void monadReturn(
A,
MyMonadType<A> *out

) override {
// ...
*out = myResult;
return;

}

template <typename B>
virtual void monadBind(
MyMonadType<A> *,
void (*f)(A, MyMonadType<B> *),
MyMonadType<B> *out

) override {
// ...
*out = myResult;
return;

}

// ...
};

template <typename A, typename B, typename C>
M<C>(*)(A) monadSequence(

void (*f)(A, Monad<B>*),
void (*g)(B, Monad<C>*),
void (**out)(A, Monad<C>*)

) {
// ...

}

// ...

where Monad is an abstract interface which is implemented by any number of actual monad instances, and then
functions can be written to operate over any type that inherits from Monad. The underlying mechanism for
this in object oriented languages is called virtual tables, a.k.a. vtables. When we define an abstract interface
like Monad, the compiler internally declares a new struct type
template <typename A>
struct MonadVtable {

void (*monadReturnImpl)(
A,
Monad<A>*

);

void (*monadBindImpl)(
Monad<A>*,
void (*)(A, Monad<B>*),
Monad<B>*

);
}

and declare a global instantiation of this MonadVtable struct for each subclass of Monad:
template <typename A>
MonadVtable<A> myMonadTypeVtable = {

&MyMonadType<A>::monadReturn,
&MyMonadType<A>::monadBind

};

and then we store a pointer to myMonadTypeVtable in every object of type MyMonadType. Thus, when we want
to call monadReturn on some object that inherits from Monad, we follow that object’s pointer to it’s vtable,
lookup the pointer to the type’s monadReturn implementation, and then call that function pointer. Essentially,
we move the polymorphism from the type system (template in C++, forall in Haskell) to a runtime data
value called a vtable.
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We can use this same technique to implement ad-hoc polymorphism in Haskell. First we declare a datatype
to represent the vtable:
data MonadVtable m = MonadVtable

-- return
(forall a. a -> m a)
-- bind, a.k.a. (>>=)
(forall a b. m a -> (a -> m b) -> m b)

getReturnFuncFrom :: MonadVtable m -> a -> m a
getReturnFuncFrom (MonadVtable return _) = return

getBindFuncFrom :: MonadVtable m -> m a -> (a -> m b) -> m b
getBindFuncFrom (MonadVtable _ bind) = bind

and then we can implement a >=> operation that supports every monad type:
monadSequence :: MonadVtable m

-> (a -> m b)
-> (b -> m c)
-> (a -> m c)

monadSequence vtable f g =
let return = getReturnFuncFrom vtable

bind = getBindFuncFrom vtable
in (\initial -> (((return initial) `bind` f) `bind` g))

As an example, let’s implement the vtable approach for a very simple monad: Maybe. The Maybe monad
represents a computation that can fail, essentially equivalent to throw/raise in imperative languages.10 First
we have to declare the actual data representation of our monad:
data Maybe a

-- either we've succeeded and returned a value of type a
= Just a
-- or an error has occured
| Nothing

Since a pure value/computation cannot fail, to lift a pure value/computation into a Maybe monad we would
just wrap it in Just:
returnForMaybe :: a -> Maybe a
returnForMaybe x = Just x

Now we can turn to implementing bind, which we’ll do in cases. Recall that the signature of bind is as follows:
bindForMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b
bindForMaybe init step = undefined

First, we’ll consider the case that init is Nothing, i.e., that the previous computation failed. In that case,
any computation that comes after it should also fail, so we have
bindForMaybe Nothing _ = Nothing

If the previous computation succeeded (i.e., init == Just x) we can unwrap the Just to get the value returned
by the previous sequential steps. Then we pass that value to step and obtain two further cases: either steps
fails (step x == Nothing) or step succeeds (step x = Just y). In the first case, if step fails then the whole
computation should fail, so in this case we return Nothing. If step succeeds, we just return the resulting
value. We can implement these cases as follows:
bindForMaybe (Just x) step = case step x of

Just y -> Just y
Nothing -> Nothing

Putting it all together, we get
10Technically it’s equivalent to throw where there is no ability to choose an exception type: a function either throws or it

doesn’t.
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bindForMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b
bindForMaybe Nothing _ = Nothing
bindForMaybe (Just x) step = case step x of

Just y -> Just y
Nothing -> Nothing

Now that we have defined both return and bind, we can define the MonadVtable instance:
monadVtableForMaybe :: MonadVtable Maybe
monadVtableForMaybe = MonadVtable returnForMaybe bindForMaybe

and then we can use any of our generic monadic operations on Maybe!
myDivideBy :: Float -> Float -> Maybe Float
myDivideBy 0.0 _ = Nothing
myDivideBy denom numer = Just (numer / denom)

myInitialValue :: Float
myInitialValue = 4.0

divideBy2 :: Float -> Maybe Float
divideBy2 = myDivideBy 2.0

divideBy0 :: Float -> Maybe Float
divideBy0 = myDivideBy 0.0

printResult :: Maybe Float -> String
printResult Nothing = "<error>"
-- show is a builtin that converts a value to a String
printResult (Just x) = show x

printResult (Just myInitialValue)
"4.0"

printResult Nothing
"<error>"

shouldSucceed :: Float -> Maybe Float
shouldSucceed =

let (>=>) = monadSequence monadVtableForMaybe
in (divideBy2 >=> divideBy2)

printResult (shouldSucceed myInitialValue)
"1.0"

shouldFail1 :: Float -> Maybe Float
shouldFail1 =

let (>=>) = monadSequence monadVtableForMaybe
in (divideBy0 >=> divideBy2)

printResult (shouldFail1 myInitialValue)
"<error>"

shouldFail2 :: Float -> Maybe Float
shouldFail2 =

let (>=>) = monadSequence monadVtableForMaybe
in (divideBy2 >=> divideBy0)

printResult (shouldFail2 myInitialValue)
"<error>"
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Typeclasses
The vtable approach shown above works even for larger programs11 but it has the downside that we need to
explicitly pass around our vtables. This is usually safe as the typechecker will catch any bugs where you
pass the either the wrong vtable or the vtable for the wrong type, but quickly gets cumbersome as we use
more and more vtables. This is exactly why in C++ the vtables are stored as a pointer on each object: passing
them around quickly gets annoying! Since most types only implement a single monad instance,12 it seems
that the compiler should be able to infer the vtable that should be used and automatically pass it around. In
fact, this feature, called *typeclasses& does exist in Haskell! Below we’ll see how to convert MonadVtable and
our corresponding instance for Maybe to an equivalent representation that uses typeclasses. The conversion
process is essentially just syntactic: typeclasses are just syntactic sugar for vtables.

First, we’ll need to convert MonadVtable to a typeclass declaration as follows:
class Monad m where

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

which looks very similar to our original vtable code:
data MonadVtable m = MonadVtable

-- return
(forall a. a -> m a)
-- bind, a.k.a. (>>=)
(forall a b. m a -> (a -> m b) -> m b)

Then we need to define an instance of Monad for Maybe:
instance Monad Maybe where

return = returnForMaybe
(>>=) = bindForMaybe

which also looks very similar to the corresponding vtable code
monadVtableForMaybe :: MonadVtable Maybe
monadVtableForMaybe = MonadVtable returnForMaybe bindForMaybe

Finally, we need to know how to pass a vtable to a function. Instead of explicitly passing the vtable à la
monadSequence :: MonadVtable m

-> (a -> m b)
-> (b -> m c)
-> (a -> m c)

monadSequence vtable f g =
let return = monadReturn vtable

bind = monadBind vtable
in (\initial -> (((return initial) `bind` f) `bind` g))

we now provide a type constraint:
(>=>) :: (Monad m)

=> (a -> m b)
-> (b -> m c)
-> (a -> m c)

(>=>) f g = (\initial -> (((return initial) >>= f) >>= g))

Note that now we can just directly use return and >>= and the compiler will automatically fetch the
corresponding vtable instances for us.

And that’s all! The conversion is very simple, and what’s going on at runtime is essentially the same as in
the vtable code.

11In fact, some people have even argued that the vtable approach is often superior to Haskell’s typeclasses
12In the case that we have multiple instances for a type, we can define wrapper types to disambiguate which instance should

be used, e.g., All and Any
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Using Monads
For the rest of this lecture we’ll be using the typeclass interface, but with minor syntactic changes everything
below also applies to out vtable implementation. First we’ll walk through a few example monads and write
some simple programs with them, and then we’ll examine some convenient syntatic sugar (do-notation) that
Haskell provides to make monadic computations look visually more like the sequential programs they’re
emulating (but remember it’s really all just monads and functions underneath—there’s no magic here!).

Example Monad Instances

Maybe We’ll start out with the Maybe monad as we’ve already encountered it in the section on implementing
monads. Recall that we define the Maybe type as follows:
data Maybe a

-- either we've succeeded and returned a value of type a
= Just a
-- or an error has occured
| Nothing

and that the monad instance is
instance Monad Maybe where

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) Nothing _ = Nothing
(>>=) (Just pre) step = case step pre of

Just post -> Just post
Nothing -> Nothing

and with these, we can begin to write monadic programs that emulate the ability of a computation to fail:
mySafeHead :: MyGenericList e -> Maybe e
mySafeHead (GenericCons head _) = Just head
mySafeHead GenericEmptyList = Nothing

mySafeTail :: MyGenericList e -> Maybe (MyGenericList e)
mySafeTail (GenericCons _ tail) = Just tail
mySafeTail GenericEmptyList = Nothing

printIntResult :: Maybe Int -> String
printIntResult (Just x) = show x
printIntResult Nothing = "<error>"

printIntList :: MyGenericList Int -> String
printIntList (GenericCons head tail) = show head ++ ":" ++ printIntList tail
printIntList GenericEmptyList = "[]"

printIntListResult :: Maybe (MyGenericList Int) -> String
printIntListResult (Just l) = printIntList l
printIntListResult Nothing = "<error>"

intList0 :: MyGenericList Int
intList0 = GenericEmptyList

intList1 :: MyGenericList Int
intList1 = GenericCons 3 GenericEmptyList

intList2 :: MyGenericList Int
intList2 = GenericCons 5 (GenericCons 2 GenericEmptyList)

intListInfinity :: MyGenericList Int
intListInfinity = let countUpFrom = (\x -> GenericCons x (countUpFrom (x + 1)))

in countUpFrom 2
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printIntResult (mySafeHead intList0)
"<error>"

printIntResult (mySafeHead intList1)
"3"

printIntResult (mySafeHead intListInfinity)
"2"

printIntListResult (mySafeTail intList0)
"<error>"

printIntListResult (mySafeTail intList1)
"[]"

Using bind we can compose computations that can fail, e.g.,
myAtIdx1 :: MyGenericList e -> Maybe e
myAtIdx1 l = (mySafeTail l) >>= mySafeHead

printIntResult (myAtIdx1 intList0)
"<error>"

printIntResult (myAtIdx1 intList1)
"<error>"

printIntResult (myAtIdx1 intList2)
"2"

printIntResult (myAtIdx1 intListInfinity)
"3"

Using bind for unary functions (i.e., functions that take a single input) is trivial, but it’s not quite as clear
how to use bind for functions with more inputs. The answer here is to use nested lambas, e.g.,
myPairHead :: MyGenericList e -> MyGenericList e' -> Maybe (e, e')
myPairHead l1 l2 = (mySafeHead l1) >>= (\h1 ->

(mySafeHead l2) >>= (\h2 ->
return (h1, h2)))

printPairResult :: Maybe (Int, Int) -> String
printPairResult (Just (l, r)) = "(" ++ show l ++ ", " ++ show r ++ ")"
printPairResult Nothing = "<error>"

printPairResult (myPairHead intList0 intList0)
"<error>"

printPairResult (myPairHead intList0 intList1)
"<error>"

printPairResult (myPairHead intList1 intList0)
"<error>"

printPairResult (myPairHead intList1 intList1)
"(3, 3)"

For many monads it’s also convenient to define some core helper functions that express the core capabilities of
the monadic type. For example, in a Maybe computation there are two capabilities: we can either successfully
compute a value (i.e., return) or we can fail (currently denoted by Nothing). However, if we do not want to

18



rely on the underlying Maybe data structure we could define the following:
fail :: Maybe a
fail = Nothing

didFail :: Maybe a -> Bool
didFail (Just _) = False
didFail Nothing = True

not :: Bool -> Bool
not True = False
not False = True

didSucceed :: Maybe a -> Bool
didSucceed = not . didFail

and then could write programs at a higher level, e.g.,
myDivide :: Float -> Float -> Maybe Float
myDivide numer denom = if denom == 0.0

then fail
else return (numer / denom)

which start to look a lot like typical programs in impure sequential languages like C and Python. In the case
of Maybe this has limited utility, but we’ll see in the next couple sections how this can be quite useful for
more complicated monads.

Reader The Reader monad implicitly passes an additional read-only “state” through the computation.
This is commonly used for implicitly propagating a user-defined application configuration throughout an
application. As we’ll be embedding this read-only stateful computation into pure Haskell code, we’ll first have
to figure out how to express a read-only stateful computation as a Haskell type. Conceptually, a read-only
stateful computation takes in an initial state as input, and returns a computed pure value based on that
state. Note that we do not return the state as it is unncecessary: our state value is constant throughout the
computation. Thus, we’ll implement the Reader monad as follows:
data Reader s a = Reader (s -> a)

In theory, we’d then declare the monad instance as
instance Monad Reader where

-- ...
<interactive>:615:16: error:

Expecting one more argument to Reader
Expected kind * -> *, but Reader has kind * -> * -> *
In the first argument of Monad, namely Reader
In the instance declaration for Monad Reader

but we get a typechecking error! Recall that a monad is required to be a type polymorphic over one variable,
but Reader is polymorphic over two. Thus, Reader itself is not actually a monad. Instead, Reader is a family
of monads, where for every state type s we get a unique monad type Reader s whose monad instance we can
define as
instance Monad (Reader s) where

return :: a -> Reader s a
-- to make this more clear we unwrap Reader, yielding "return :: a -> (s -> a)"
return x = Reader (\_ -> x)

(>>=) :: Reader s a -> (a -> Reader s b) -> Reader s b
-- or unwrapped: "(>>=) :: (s -> a) -> (a -> (s -> b)) -> (s -> b)
(>>=) (Reader initialComputation) chooseNextComputation = Reader (\initialState ->
let computedByInitial = initialComputation initialState

(Reader nextComputation) = chooseNextComputation computedByInitial
in nextComputation initialState)
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As expected, return lifts a pure value into a read-only stateful computation that behaves like that pure value,
i.e., returns the same pure value regardless of the state. bind is also quite simple: given an initial read-only
stateful computation initialComputation and the next step in our sequential program nextComputation, we
say that for any initial state s that this sequential program is given we first run the initial computation with
the given state (i.e., initialComputation initialState) and then run the next computation, also passing it
the initial state (i.e., nextComputation initialState).

Now we can use Reader to implement a program that, for example, returns a greeting based on a user-
configuration:
data UserConfig =

UserConfig
-- first name
String
-- last name
String
-- title
String
-- age
Int

firstName :: UserConfig -> String
firstName (UserConfig fstName _ _ _) = fstName

lastName :: UserConfig -> String
lastName (UserConfig _ lstName _ _) = lstName

title :: UserConfig -> String
title (UserConfig _ _ t _) = t

age :: UserConfig -> Int
age (UserConfig _ _ _ a) = a

getFirstName :: Reader UserConfig String
getFirstName = Reader (\s -> firstName s)

getLastName :: Reader UserConfig String
getLastName = Reader (\s -> lastName s)

getTitle :: Reader UserConfig String
getTitle = Reader (\s -> title s)

getAge :: Reader UserConfig Int
getAge = Reader (\s -> age s)

getUserFormalName :: Reader UserConfig String
getUserFormalName = getFirstName >>= (\firstName ->

getLastName >>= (\lastName ->
getTitle >>= (\title ->
return (title ++ " " ++ firstName ++ " " ++ lastName))))

ageDependentGreeting :: Int -> String
ageDependentGreeting age = if age < 5

then "Aren't you cute!"
else

(if age < 15
then "Look at you, all grown up!"
else

(if age < 80
then "Another day another dollar, am I right?"
else
(if age < 110

then "How's retirement?"
else "Wow you're old!")))

getUserGreeting :: Reader UserConfig String
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getUserGreeting = getUserFormalName >>= (\formalName ->
getAge >>= (\age ->

let appropriateGreeting = ageDependentGreeting age
in return ("Good day to you, " ++ formalName ++ "! " ++

appropriateGreeting)))

To run this we now just need a way to extract the pure function that represents this read-only stateful
computation, i.e.,
extractPureFunction :: Reader s a -> (s -> a)
extractPureFunction (Reader f) = f

and then we can run our program:
myUser :: UserConfig
myUser = UserConfig "Colin" "Unger" "best TA ever" 25

pureGreetUser :: UserConfig -> String
pureGreetUser = extractPureFunction getUserGreeting

pureGreetUser myUser
"Good day to you, best TA ever Colin Unger! Another day another dollar, am I right?"

As with Maybe, we can also define a couple helper functions that capture the essence of what the Reader
monad supports so we don’t have to depend directly on the underlying implementation of the Reader data
type. The primary operation that Reader supports is the ability to get the current implicitly-pased state
value. Since the only value each step in our monadic program can access is the a in Reader s a13, to actually
use the state we’ll need to inject it into our value:
getImplicit :: Reader s s
getImplicit = Reader (\s -> s)

Now we can define, for example getLastName without directly using the Reader type constructor:
getLastName :: Reader UserConfig String
getLastName = getImplicit >>= (\s -> return (lastName s))

Writer Writer is the opposite of Reader: instead of a read-only stateful computation it emulates a write-only
(or more accurately append-only) stateful computation. The canonical use for Writer is logging, where we
want our computations to be able to append messages to an implicitly tracked log of messages. Conceptually,
we can model the essence of an append-only stateful computation as a tuple of a computed value a and the
log l produced by that computation, i.e., (a, l). Thus, we define our Writer monad as follows:
data Writer s a = Writer (s, a)

Then we’d turn to defining our monad instance. First we’ll start with return:
instance Monad (Writer s) where

return :: a -> Writer s a
-- or unwrapped: "return :: a -> (s, a)"
return v = Writer (error "What goes here?", v)

(>>=) = undefined -- ignore bind for now

but it’s unclear what we’d put for the log: a pure computation should not log anything, so we’d expect to
put something like []. However, that would require that s be a list, and we’ve placed no such requirement.
We could add this requirement, but there are things we could log that aren’t just messages, e.g.,
type MemoryUsageLogger x = Writer Int x

13Since for Reader, bind has type Reader s a -> (a -> Reader s a) -> Reader s a, our function to choose the
next computation step (the second parameter to bind, i.e., the one with type a -> Reader s a) is only passed the value type
a and not the state s.
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It turns out that the most general structure that provides the expected behavior is a monoid, which is defined
as: a set of objects Obj, an associative binary operation mappend, and an identity element mempty ∈ Obj. In
Haskell we can represent this with the typeclass
class Monoid t where

mempty :: t
mappend :: t -> t -> t

-- shorthand for mappend
(<>) :: Monoid t => t -> t -> t
(<>) = mappend

subject to the following laws:

1. for any x ∈ Obj, x <> mempty == mempty <> x == x, i.e., mempty forms an identity under mappend.
2. for any x, y, z ∈ Obj, x <> (y <> z) == (x <> y) <> z, i.e., mappend is associative.

We’ll skip a detailed explanation of why monoids provide the necessary structure for the state in Writer, but
a good source of intuition is to notice that the Monoid laws look very similar to the Monad laws, so we can
expect that using Monoid will maintain the monadic structure of Writer.

Now we can declare the correct monad instance for Writer:
instance (Monoid s) => Monad (Writer s) where

return :: a -> Writer s a
return x = Writer (mempty, x)

(>>=) :: Writer s a -> (a -> Writer s b) -> Writer s b
(>>=) (Writer initialComputation) chooseNextStep =
let (initialLogs, initialReturnValue) = initialComputation

(Writer (nextLogs, nextReturnValue)) = chooseNextStep initialReturnValue
in Writer (initialLogs <> nextLogs, nextReturnValue)

and then we can implement the two Writer usages above. First, appending strings to a log:
instance Monoid [a] where

mempty = []
mappend l r = l ++ r

type MessageLogger a = Writer [String] a
type NetworkResponse = String

logMessage :: String -> MessageLogger ()
logMessage msg = Writer ([msg], ())

length :: [a] -> Int
length (_:rest) = 1 + length rest
length [] = 0

mockNetworkCommunication :: String -> MessageLogger NetworkResponse
mockNetworkCommunication packet =

logMessage ("Successfully sent packet of size " ++ show (length packet)) >>= (\_ -> return "
hello to you too!")

sendNetworkPacket :: String -> MessageLogger ()
sendNetworkPacket packet = logMessage "Starting network communication" >>= (\_ ->

mockNetworkCommunication packet >>= (\response ->
logMessage ("Received response: " ++ response) >>= (\_ ->
logMessage "Finished network communication!")))

combineEntries :: [String] -> String
combineEntries (h:[]) = h
combineEntries (h:rest) = h ++ "; " ++ combineEntries rest
combineEntries [] = ""

printLogs :: MessageLogger a -> String
printLogs (Writer (log, _)) = combineEntries log
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printLogs (sendNetworkPacket "hello network!")
"Starting network communication; Successfully sent packet of size 14; Received response: hello to

you too!; Finished network communication!"

Second, memory usage:
type MemoryUsage = Int

instance Monoid MemoryUsage where
mempty = 0
mappend l r = l + r

type MemoryUsageTracker a = Writer MemoryUsage a
data Allocation = Allocation Int

increaseMemoryUsage :: Int -> MemoryUsageTracker ()
increaseMemoryUsage amt = Writer (amt, ())

decreaseMemoryUsage :: Int -> MemoryUsageTracker ()
decreaseMemoryUsage amt = Writer (- amt, ())

trackMalloc :: Int -> MemoryUsageTracker Allocation
trackMalloc size = increaseMemoryUsage size >>= (\_ -> return (Allocation size))

trackFree :: Allocation -> MemoryUsageTracker ()
trackFree (Allocation size) = decreaseMemoryUsage size

exampleProgram :: MemoryUsageTracker ()
exampleProgram = trackMalloc 12 >>= (\block1 ->

trackMalloc 15 >>= (\block2 ->
trackMalloc 8 >>= (\block3 ->

trackFree block1 >>= (\_ ->
trackMalloc 9 >>= (\block4 ->

trackFree block3)))))

getMemoryUsage :: MemoryUsageTracker a -> MemoryUsage
getMemoryUsage (Writer (s, _)) = s

printMemoryUsage :: MemoryUsageTracker a -> String
printMemoryUsage tracker = "Memory usage: " ++ show (getMemoryUsage tracker)

printMemoryUsage exampleProgram
"Memory usage: 24"

As with Maybe and Reader, we can also define additional functions to avoid depending on the underlying
implementation of Writer:
output :: s -> Writer s ()
output v = Writer (v, ())

and thus can rewrite, for example, logMessage as
logMessage :: String -> MessageLogger ()
logMessage msg = output [msg]

State You may notice an issue with the MemoryUsage implementation above: deallocating a block multiple
times allows the memory usage to go negative! Since the Writer monad provides no way to access the
state from within the computation, to prevent freeing an already freed block we’ll need a monad that
combines Reader and Writer, i.e., models a read-write stateful computation. We call this monad State and
can implement it as follows:
data State s a = State (s -> (a, s))

Looking at this closely, we can see the similarity to both Reader and Writer: the type of State’s field
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(s -> (a, s)) resembles a combination Reader (s -> a) and Writer ((s, a)). We can read the type of State’s
field as “a function from an initial state to a resulting value and a resulting state”, which suggests the monad
instance below:
instance Monad (State s) where

return :: a -> State s a
-- or unwrapped: "return :: a -> (s -> (a, s))"
-- we would expect a pure computation to leave the state untouched,
-- so return creates a function that returns the given value while passing
-- the state on unmodified
return x = State (\s -> (x, s))

(>>=) :: State s a -> (a -> State s b) -> State s b
-- or unwrapped: "(>>=) :: (s -> (a, s)) -> (a -> (s -> (b, s))) -> (s -> (b, s))
-- given an initial computation and a function to determine the next computation, we
-- expect (>>=) to first calculate the value and state returned from the initial computation
-- use the returned value to compute the next computation, and then to pass the returned state
-- to the next computation.
-- Note that none of these values actually contain the initial state: the State monad

constructs
-- a function that is contingent on the initial state passed in rather than constructing the

final
-- state directly
(>>=) (State initialComputation) chooseNextStep = State (\initialState ->
let (intermediateValue, intermediateState) = initialComputation initialState

(State nextComputation) = chooseNextStep intermediateValue
in nextComputation intermediateState)

Unlike Reader instead of passing on the initial state, State’s bind passes on the modified state
(intermediateState) that results from the inital computation. Note that we no longer need the type
constraint Monoid s that was required for Writer as we allow State not only to append to the state value,
but also to overwrite it. This time we’ll start by implementing some primitive functions for State, and then
will use them in our improved heap implementation:
getState :: State s s
getState = State (\s -> (s, s))

setState :: s -> State s ()
setState s' = State (\s -> ((), s'))

modifyState :: (s -> s) -> State s ()
modifyState f = getState >>= (\s -> setState (f s))

fromState :: (s -> a) -> State s a
fromState f = getState >>= (\s -> return (f s))

extractPureFunction :: State s a -> (s -> (a, s))
extractPureFunction (State f) = f

Now we can turn to implementing a safer version of our MemoryUsage computation: we will store a list of
allocations, and whenever we call free we will only decrement the memory usage if the provided block is
currently allocated. First we’ll need to generalize our example program from the last program, in addition to
adding some for the error cases. Since each of our heap implementations will have different behaviors but
expose the same interface (malloc and free) we can generalize our example programs over a custom typeclass.
The only difficulty is that each of our different interpreters may have a custom Block representation, so we’ll
inform the compiler of this using the following:
class Monad m => HeapLangInterpreter m b | m -> b where

malloc :: Int -> m b
free :: b -> m ()

Don’t worry too much about understanding this exact syntax14—just read it as “declare a new typeclass
called HeapLangInterpreter over a type m which requires m to be a Monad and has an additional type b (our

14If you’re curious about it, see the documentation on functional dependencies here
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block type) that is uniquely determined by the identity of type m”. With this we can now define an instance
for our existing MemoryUsageTracker:
instance HeapLangInterpreter (Writer MemoryUsage) Allocation where

malloc = trackMalloc
free = trackFree

Now we can define our heap programs without worrying about how they’ll be interpreted:
exampleValidProgram :: HeapLangInterpreter m b => m ()
exampleValidProgram = malloc 12 >>= (\block1 ->

malloc 15 >>= (\block2 ->
malloc 8 >>= (\block3 ->
free block1 >>= (\_ ->

malloc 9 >>= (\block4 ->
free block3 >>= (\_ ->
return ()))))))

exampleDoubleFree :: HeapLangInterpreter m b => m ()
exampleDoubleFree = malloc 12 >>= (\block1 ->

malloc 15 >>= (\block2 ->
malloc 8 >>= (\block3 ->

free block1 >>= (\_ ->
malloc 9 >>= (\block4 ->
free block1 >>= (\_ ->

free block1 >>= (\_ ->
free block1 >>= (\_ ->

free block1 >>= (\_ ->
free block3 >>= (\_ ->

free block1 >>= (\_ ->
return ())))))))))))

and since MemoryUsageTracker is an instance of HeapLangInterpreter, we can confirm that our existing
interpreter is insufficient to handle exampleDoubleFree:
printMemoryUsage exampleDoubleFree
"Memory usage: -36"

To fix this, we’ll implement a new interpreter monad using State that keeps track of which blocks it has
allocated and does not reduce memory usage for any double frees that occur. First, we’ll need a way of
tracking which block is which—in our existing implementation we only track the size of allocations, not their
identity. To do this, we’ll define a new Block type with an additional ID field with type Int:
data Block = Block Int Allocation

blockSize :: Block -> Int
blockSize (Block _ (Allocation size)) = size

blockID :: Block -> Int
blockID (Block idNum _) = idNum

-- Haskell uses the Eq typeclass to allow types to register
-- custom equality operators. Without an Eq implementation
-- a type is not equality-comparable
instance Eq Block where

(==) :: Block -> Block -> Bool
(==) (Block lIdNum (Allocation lSize)) (Block rIdNum (Allocation rSize)) =

(lIdNum == rIdNum) && (lSize == rSize)

and then we can define our representation of our heap’s state along with some getters and setters:
data HeapState = HeapState

-- currently allocated blocks
[Block]
-- next free block id
Int
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allocated :: HeapState -> [Block]
allocated (HeapState inUse _) = inUse

setAllocated :: [Block] -> HeapState -> HeapState
setAllocated bs (HeapState _ i) = HeapState bs i

getHeapStateID :: HeapState -> Int
getHeapStateID (HeapState _ i) = i

setHeapStateID :: Int -> HeapState -> HeapState
setHeapStateID new (HeapState inuse _) = HeapState inuse new

Since we’ll need to both read from our HeapState (to see which blocks are allocated and which id to use next)
and write to it (to update these values on allocation and deallocation), we’ll use a State monad:
type WithHeap a = State HeapState a

To make it easier to refactor our HeapState later, we’ll implement our core functions so they can only see the
part of the State they need using the following helper function:
maskState :: (s -> s') -- a getter from the full state to the isolated state

-> (s' -> s -> s) -- a setter to update the full state with the new isolated state
-> State s' b -- our isolated stateful computation
-> State s b -- our unisolated stateful computation

maskState mask unmask f = let f' = extractPureFunction f
in State (\s -> let masked = mask s

(b, s') = f' masked
in (b, unmask s' s))

class HasNextBlockId s where
getNextBlockId :: s -> Int
setNextBlockId :: Int -> s -> s

instance HasNextBlockId HeapState where
getNextBlockId = getHeapStateID
setNextBlockId = setHeapStateID

class HasInUseBlockList s where
getInUse :: s -> [Block]
setInUse :: [Block] -> s -> s

instance HasInUseBlockList HeapState where
getInUse = allocated
setInUse = setAllocated

Now we can define masks for each member of HeapState:
idMasked :: HasNextBlockId s => State Int a -> State s a
idMasked = maskState getNextBlockId setNextBlockId

inUseMasked :: HasInUseBlockList s => State [Block] a -> State s a
inUseMasked = maskState getInUse setInUse

and then we can define some basic stateful actions we’ll need. First we’ll need a way to update our unique ID
whenever we allocate a new block:
incrementID :: HasNextBlockId s => State s Int
incrementID = idMasked (modifyState (+ 1) >>= (\_ -> getState))

Then we’ll need a way to mark blocks as either “in use” (by placing it in our heaps “allocated” list):
markBlockInUse :: HasInUseBlockList s => Block -> State s ()
markBlockInUse b = inUseMasked (modifyState (\bs -> b:bs))

or “freed” (by removing it from the “allocated” list):
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map :: (a -> b) -> [a] -> [b]
map f (head:rest) = (f head) : (map f rest)
map _ [] = []

mconcat :: Monoid t => [t] -> t
mconcat [] = mempty
mconcat (head:rest) = head `mappend` (mconcat rest)

foldMap :: Monoid t => (a -> t) -> [a] -> t
foldMap f = mconcat . map f

removeAll :: Eq a => a -> [a] -> [a]
removeAll x = foldMap (\x' -> if x' == x then [] else [x'])

markBlockFree :: HasInUseBlockList s => Block -> State s ()
markBlockFree b = inUseMasked (modifyState (removeAll b))

We’ll also want a way to check if a block is marked as “in use”:
contains :: Eq a => a -> [a] -> Bool
contains x (h:rest) = if h == x then True else contains x rest
contains x [] = False

isInUse :: HasInUseBlockList s => Block -> State s Bool
isInUse = inUseMasked . fromState . contains

With all of that defined, implementing our malloc and free functions is quite simple:
mallocSafe :: (HasInUseBlockList s, HasNextBlockId s) => Int -> State s Block
mallocSafe size = incrementID >>= (\blockId ->

let block = Block blockId (Allocation size)
in markBlockInUse block >>= (\_ -> return block))

-- our HeapLangInterpreter typeclass does not require
-- us to return whether or not a free succeeds, but since
-- we have that information here we return it in case it
-- is is helpful in some other case
freeSafe :: (HasInUseBlockList s, HasNextBlockId s) => Block -> State s Bool
freeSafe b = isInUse b >>= (\c ->

markBlockFree b >>= (\_ ->
return c))

and then we can define our HeapLangInterpreter instance:
instance HeapLangInterpreter (State HeapState) Block where

malloc = mallocSafe
free size = (freeSafe size) >>= (\_ -> return ())

Now we write a few small helper functions to compute the memory usage for our new heap representation:
memoryUsage :: WithHeap Int
memoryUsage = inUseMasked (fromState (foldMap blockSize))

initialHeapState :: HeapState
initialHeapState = HeapState [] 0

showMemoryUsage :: WithHeap a -> String
showMemoryUsage prog = let f = extractPureFunction (prog >>= (\_ -> memoryUsage))

(usage, finalHeap) = f initialHeapState
in "Memory usage: " ++ show usage

and we can see that now we handle the test programs correctly!
showMemoryUsage exampleValidProgram
"Memory usage: 24"

showMemoryUsage exampleDoubleFree
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"Memory usage: 24"

Phew! That was a lot of code.

Now our memory tracking is resilient to double frees, but only by making free fail silently when a double free
occurs. Let’s now write an additional logging mechanism so we can tell where a double free has occured!
First we’ll update our HeapState with an additional log:
data HeapStateWithLog = HeapStateWithLog

-- our list of allocated blocks
[Block]
-- our next free block id
Int
-- a log of heap states where we performed a double free
-- along with what block we tried to free
[(HeapState, Block)]

instance HasNextBlockId HeapStateWithLog where
getNextBlockId (HeapStateWithLog _ idNum _) = idNum
setNextBlockId idNum (HeapStateWithLog inUse _ log) =

HeapStateWithLog inUse idNum log

instance HasInUseBlockList HeapStateWithLog where
getInUse (HeapStateWithLog inUse _ _) = inUse
setInUse inUse (HeapStateWithLog _ idNum log) =

HeapStateWithLog inUse idNum log

Now we just need to add a function to let us add new log messages:
append :: a -> [a] -> [a]
append x rest = rest ++ [x]

getLog :: HeapStateWithLog -> [(HeapState, Block)]
getLog (HeapStateWithLog _ _ log) = log

setLog :: [(HeapState, Block)] -> HeapStateWithLog -> HeapStateWithLog
setLog log (HeapStateWithLog inUse idNum _) = HeapStateWithLog inUse idNum log

logMasked :: State [(HeapState, Block)] a -> State HeapStateWithLog a
logMasked = maskState getLog setLog

getCurrentHeapState :: State HeapStateWithLog HeapState
getCurrentHeapState = getState >>= (\(HeapStateWithLog inUse idNum _) ->

return (HeapState inUse idNum))

logDoubleFree :: Block -> State HeapStateWithLog ()
logDoubleFree b = getCurrentHeapState >>= (\st -> logMasked (modifyState (append (st, b))))

and then we can add a logged version of free:
freeLogged :: Block -> State HeapStateWithLog ()
freeLogged b = freeSafe b >>= (\succeeded ->

if succeeded then return () else logDoubleFree b)

instance HeapLangInterpreter (State HeapStateWithLog) Block where
malloc = mallocSafe
free = freeLogged

and then we can check that we successfully detect the double frees in exampleDoubleFree:
length :: [a] -> Int
length = foldMap (\_ -> 1)

initialLoggedHeapState :: HeapStateWithLog
initialLoggedHeapState = HeapStateWithLog [] 0 []

getNumDoubleFrees :: State HeapStateWithLog () -> Int
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getNumDoubleFrees prog = let (_, finalState) = (extractPureFunction prog) initialLoggedHeapState
in length (getLog finalState)

getNumDoubleFrees exampleValidProgram
0

getNumDoubleFrees exampleDoubleFree
5

IO If you’ve been paying close attention, you may have noticed that I haven’t quite delivered what I
promised: I told you that monads would let us perform effectful computations, but so far all I’ve done is
emulate effectful computations using pure computations. Nothing we’ve covered so far would let us print to
the terminal, or talk over the network, or modify the filesystem, or otherwise affect the external world. This
is where the IO monad comes in.

At a surface level, the IO monad provides the ability to perform these system interactions. For example, we
have
putStrLn :: String -> IO ()

which lets us print a line to the terminal, e.g.,
putStrLn "hello world!"
hello world!

In fact, IO provides a number of functions that let us interact with the outside world:
openFile :: FilePath -> IOMode -> IO Handle
hSeek :: Handle -> SeekMode -> Integer -> IO ()
hWaitForInput :: Handle -> Int -> IO Bool
hGetLine :: Handle -> IO String
getLine :: IO String
-- ... and many more

and while we can use these functions similarly to any other monad, e.g.,
myEcho :: IO ()
-- reads a line from stdin and echos it back out to stdout
getLine >>= putStrLn

it’s not clear how, for example, putStrLn would actually be implemented. On a practical implementation level,
the answer is that it can’t be: putStrLn is ultimately a piece of C code deep in the Haskell runtime. However,
by looking at IO a bit differently we can imagine how the core concept behind IO could be implemented
within pure Haskell code.

The key to understanding how to implement IO in pure code is to reimagine what a Haskell program looks
like at the top level. To build a Haskell executable, you need a main function, e.g.,
main :: IO ()
main = putStrLn "Hello World!"

Note that main has type IO (). Following the same logic as our previous monads, we can read this as “a
computation that returns () along with a sequence of interactions with the environment”. But this sounds
quite familiar: a “a computation [. . . ] along with sequence of interactions with the environment” is just an
impure, sequential program! Depending on the underlying data structures we use, this program would be
represented by a string containing the source code for a C program, or a Python AST, or in general a program
in any impure language.

Thus, instead of viewing main as an impure function that executes when the binary starts, we can instead
view main as a pure function that returns an impure program which is then executed by something else: for
example we could represent this impure program as a C program, pass it to gcc, compile it, and run the
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resulting executable to perform the actual interaction with the environment. For practical reasons this is not
how the underlying implementation works, but it is essentially15 equivalent to how the implementation works.
Anywhere we can view a Haskell program as being impure, we can also view that program as a pure program
that generates an impure program. In other words, Haskell is less a general-purpose language and more a
domain-specific language for generating impure programs!

do-notation

As we’ve seen from many of the examples above, while monadic code behaves like sequential code it often
fails to look like it. When we’re writing monadic code, we frequently make use of the following two “tricks”.

First, instead of assigning to intermediate variables as is done in sequential languages, in Haskell we use
beta-reduction to assign (frequently called “bind”) the results of monadic computations to readable names,
e.g.,
bindingTrickExample :: MemoryUsageTracker ()
bindingTrickExample = malloc 12 >>= (\block1 -> free block1)

instead of
{

block1 = malloc 12;
free block1;

}

Second, we return () and bind to _ in cases where we do not care about the computed value but still want to
guarantee sequencing, e.g.,
discardTrickExample :: Allocation -> Int -> MemoryUsageTracker ()
discardTrickExample b1 size = free b1 >>= (\_ -> malloc size >>= (\_ -> return ()))

instead of
{

free b1;
malloc size;
return None;

}

With these two tricks in mind, we can mechanically translate our monadic code to the sequential code it
emulates, e.g.,
exampleProgram :: MemoryUsageTracker ()
exampleProgram = malloc 12 >>= (\block1 ->

malloc 15 >>= (\block2 ->
malloc 8 >>= (\block3 ->

free block1 >>= (\_ ->
malloc 9 >>= (\block4 ->

free block3)))))

is equivalent to
def exampleProgram() {

block1 = malloc 12;
block2 = malloc 15;
block3 = malloc 8;
free block1;
block4 = malloc 9;
free block3;

}

and similarly, for any sequential code, e.g.,
15There are some exceptions, namely unsafePerformIO which actually does perform impure computation, but for the vast

majority of programs this equivalence holds.
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def exampleProgram2() {
block1 = malloc 13;
malloc 16;
free block1;
block2 = malloc 13;
block3 = malloc 16;
free block2;
malloc 12;

}

we can translate it into the equivalent monadic code:
exampleProgram2 :: MemoryUsageTracker ()
exampleProgram2 = malloc 13 >>=

(\block1 -> malloc 16 >>=
(\_ -> free block1 >>=
(\_ -> malloc 13 >>=

(\block2 -> malloc 16 >>=
(\block3 -> free block2 >>=
(\_ -> malloc 12 >>=

(\_ -> return ())))))))

Since this translation process is entirely mechanical, it would be convenient if we could construct monadic
values using a syntax that looks more like a sequential program, and then the compiler would automatically
expand it out to the corresponding monadic code when it compiles our program. This is what do-notation
provides: syntactic sugar for constructing monadic values. We can write
exampleProgram2WithDo :: MemoryUsageTracker ()
exampleProgram2WithDo = do block1 <- malloc 13

free block1
_ <- malloc 16
block2 <- malloc 13
block3 <- malloc 16
free block2
_ <- malloc 12
return ()

and the Haskell compiler will internally translate this to
exampleProgram2Real :: MemoryUsageTracker ()
exampleProgram2Real = malloc 13 >>=

(\block1 -> malloc 16 >>=
(\_ -> free block1 >>=
(\_ -> malloc 13 >>=
(\block2 -> malloc 16 >>=

(\block3 -> free block2 >>=
(\_ -> malloc 12 >>=

(\_ -> return ())))))))

In do-notation, for the most part each line must either be an assignment where the left-hand side is a valid
Haskell variable name (or pattern match) and the right hand side is value of type Monad m => m a, or a value
of type Monad m => m () (in which case we just implicitly throw away the resulting ()). Examining the lines
of exampleProgram2WithDo, we can see that these conditions hold:
:type (malloc 13)
(malloc 13) :: HeapLangInterpreter m b => m b

:type (free undefined)
(free undefined) :: HeapLangInterpreter m b => m ()

:type (return ())
(return ()) :: Monad m => m ()

However, we can also construct more complex-looking programs that also satisfy these rules, e.g.,
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exampleProgramComplexDo :: MemoryUsageTracker ()
exampleProgramComplexDo = do block1 <- let increment x = x + 1

mysize = increment 12
in do myblock <- malloc 13

free myblock
return myblock

nextsize <- return 13
(block2, block3) <- (malloc nextsize >>= (\b2 ->

malloc 16 >>= (\b3 ->
return (b2, b3))))

let amIRun = malloc 12345
in do free block2

let beforeIReturn = malloc 12
in beforeIReturn >>= (\_ -> Writer (0, ()))

I recommend going through exampleProgramComplexDo and seeing how each line satisfies the rules of do-
notation. In fact, you should notice that exampleProgramComplexDo is equivalent to exampleProgram2Real and
exampleProgram2WithDo.

Beyond Monads
While monads are arguably the best-known of Haskell’s typeclasses, there exist many other typeclasses,
including other fundamental structures of computation, that are used throughout Haskell code. In this section
we’ll focus on one set of typeclasses deriving from category theory (Functor, Applicative, and Monad), but
there also exist typeclasses from abstract algebra (e.g., Semigroup, Monoid), typeclasses describing collections
and iteration (e.g., Foldable, Traversable), as well as a number of category-theoretical constructs that we
won’t cover here (e.g., Arrow, Comonad, Category, Divisible, and Predicate).16

Functor
Functors distill the concept of distill the concept of a container holding zero or more elements. The Functor
typeclass is defined as follows:
class Functor f where

fmap :: (a -> b) -> f a -> f b

Intuitively, fmap is responsible for applying a function over the elements of the container. As such, we require
it to follow the following laws:

1. fmap id ≡ id (“if we apply id to the elements of the container it should be no different than applying
id to the container directly, as none of the elements should have been modified in either case”)

2. fmap (g . h) ≡ (fmap g) . (fmap h) (“since our Functor should just act as a container of independent
elements, it shouldn’t matter we apply functions over it in one pass, i.e., g . h, or in two passes, i.e., g
and then h”)

As expected, many common containers are instances of Functor:
map :: (a -> b) -> [a] -> [b]
map f (h:rest) = (f h):(map f rest)
map _ [] = []

instance Functor [] where
fmap :: (a -> b) -> [a] -> [b]
fmap = map

data Fst t a = Fst (a, t)
instance Functor (Fst t) where

fmap :: (a -> b) -> Fst t a -> Fst t b
-- unwrapped: "fmap :: (a -> b) -> (a, t) -> (b, t)

16If you’re interested in exploring the wider world of Haskell typeclasses, check out the Typeclassopedia.
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fmap f (Fst (l, r)) = Fst (f l, r)

data Snd t a = Snd (t, a)
instance Functor (Snd t) where

fmap :: (a -> b) -> Snd t a -> Snd t b
-- unwrapped: "fmap :: (a -> b) -> (t, a) -> (t, b)
fmap f (Snd (l, r)) = Snd (l, f r)

instance Functor Maybe where
fmap :: (a -> b) -> Maybe a -> Maybe b
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

data Empty a = Empty ()
instance Functor Empty where

fmap :: (a -> b) -> Empty a -> Empty b
-- unwrapped: "fmap :: (a -> b) -> () -> ()"
fmap _ (Empty ()) = Empty ()

instance Functor (Reader s) where
fmap :: (a -> b) -> Reader s a -> Reader s b
-- unwrapped: (a -> b) -> (s -> a) -> (s -> b)
fmap f (Reader rf) = Reader (f . rf)

Typeclass Constraints
It turns out that not only is Reader a functor, but in fact every Monad is also a Functor: every Monad contains
a “return value” which, using bind, we can extract and compute over—just like fmap. Note that while every
Monad is a Functor, not all Functors are Monads—this should be unsurprising, as the capability to sequence
both value computations and side effects in a monad is intuitively much broarder than the capabilities of a
generic container. Because every Monad is a Functor, monadic code often interleaves Functor operations with
monadic operations, e.g.,
type Dollars = Float

getPropertyValue :: Monad m => m Dollars
getPropertyValue = return 100

calculateTax :: Monad m => Dollars -> m Dollars
calculateTax d = return (if d > 1000 then (d * 0.10) else (d * 0.05))

taxEvasion :: (Functor m, Monad m) => m Dollars
taxEvasion = (fmap (\value -> value * 0.8) getPropertyValue) >>= calculateTax

In these cases, requiring the programmer to specify that type m is both a Functor and a Monad is redundant,
as if a type m is a valid Monad then mathematically it must also be a valid Functor. To allow the compiler to
take advantage of this fact, similar to our Monoid constraint on Writer we can add additional type constraints
when declaring typeclasses, e.g.,
class Functor m => Monad m where

-- ...

With this constraint added the compiler will require that every Monad have a corresponding Functor instance
and in return we will only need to add the type constraint Monad m instead of both Monad m and Functor m to
any code using both monadic and functor operations, e.g.,
taxEvasion :: Monad m => m Dollars
taxEvasion = (fmap (\value -> value * 0.8) getPropertyValue) >>= calculateTax

Applicative
Historically Functor and Monad were the dominant typeclasses in Haskell, and the Monad typeclass was subject
to the constraint Functor m => Monad m. However, a 2008 paper proposed a useful intermedidate abstraction
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called Applicative. The Applicative definition is stronger than Functor (i.e., every Applicative is a Functor
but not every Functor is an Applicative) but weaker than Monad (i.e., every Monad is an Applicative but
not every Applicative is a Monad). Conceptually, where Monad provides the ability to interleave both value
computations and effects, Applicative allows us to sequence value computations and effects but not to
interleave them.

The canonical example of this difference is ifM vs ifA:
ifM :: Monad m => m Bool -> m a -> m a -> m a
ifA :: Applicative m => m Bool -> m a -> m a -> m a

When using the monadic interface, we can evaluate the condition (and its side effects), and if it returns True
then we can run the then branch (and its side effects) while ignoring the else branch, and if it returns False
then we can run the else branch (and its side effects) while ignoring the then branch:
ifM (Just True) (Just 5) Nothing
Just 5

In comparison, when using the applicative interface, we can sequence the value computations (i.e., if the
condition returns True then return the value of the then branch otherwise return the value of the else branch)
and the effects (i.e., first run the effects of the condition, then the then branch, then the false branch), but
we can’t use the value returned by the condition to influence which side effects are run, e.g.,
ifA (Just True) (Just 5) Nothing
Nothing

Formally, the Applicative typeclass is defined as follows:
class Functor m => Applicative m where

pure :: a -> m a
(<*>) :: m (a -> b) -> m a -> m b

along with the following laws

1. pure id <*> v = v
2. pure f <*> pure x = pure (f x)
3. u <*> pure y = pure (\f -> f y) <*> u
4. u <*> (v <*> w) = pure (.) <*> u <*> v <*> w
5. fmap g x = pure g <*> x

Since every Monad is an Applicative, we’ll also want to add that as a constraint on Monad:
class Applicative m => Monad m where

return :: a -> m a
return = pure

(>>=) :: m a -> (a -> m b) -> m b

We can see that while Applicative resembles Monad, there is a difference in the type signatures of <*> and
>>=. This difference becomes clearer when we consider flip (<*>) and >>=:
flip :: (a -> b -> c) -> (b -> a -> c)
flip f = (\x y -> f y x)

:type (flip (<*>))
(flip (<*>)) :: Applicative m => m a -> m (a -> b) -> m b

:type (>>=)
(>>=) :: Monad m => m a -> (a -> m b) -> m b

In >>=, the value computation (a) can affect the produced side effects (m) through the type of the “step”
function a -> m b. However, with <*> the value computation is entirely contained within the side effects

34



(m (a -> b)) and so the side effects (m) and the value computation (a, a -> b, b) are independent of each
other.

Another way to understand the difference between Applicative and Monad is to examine a case of an
Applicative which cannot have a corresponding Monad instance defined. Let’s consider the following applicative
instance:
data WriterWithNoValue s a = WriterWithNoValue s

instance Functor (WriterWithNoValue s) where
fmap :: (a -> b) -> WriterWithNoValue s a -> WriterWithNoValue s b
fmap _ (WriterWithNoValue x) = (WriterWithNoValue x)

instance Monoid s => Applicative (WriterWithNoValue s) where
pure _ = WriterWithNoValue mempty

(<*>) :: WriterWithNoValue s (a -> b) -> WriterWithNoValue s a -> WriterWithNoValue s b
-- unwrapped: "(<*>) :: s -> s -> s"
(<*>) (WriterWithNoValue fSideEffects) (WriterWithNoValue xSideEffects) =

WriterWithNoValue (fSideEffects <> xSideEffects)

Here we have a modified version of the Writer monad we defined earlier, but here we’ve left out Writer’s
value parameter. Since we’re able to define an Applicative instance for WriterWithNoValue, it must hold that
the side effects of Applicative can be sequenced without any knowledge of the value computation, since for
WriterWithNoValue there is no value computation! Trying to define a Monad instance, however, quickly runs
into trouble:
instance Monoid s => Monad (WriterWithNoValue s) where

return _ = WriterWithNoValue mempty

(>>=) :: WriterWithNoValue s a -> (a -> WriterWithNoValue s b) -> WriterWithNoValue s b
-- unwrapped: "(>>=) :: s -> (a -> s) -> s"
(>>=) (WriterWithNoValue lSideEffects) sf =
let (WriterWithNoValue sfSideEffects) = sf _ -- we don't have an a to pass to sf!
in WriterWithNoValue (lSideEffects <> sfSideEffects)

<interactive>:1355:48: error:
Found hole: _ :: a
Where: a is a rigid type variable bound by

the type signature for:
(>>=) :: forall {k} a (b :: k).

WriterWithNoValue s a
-> (a -> WriterWithNoValue s b) -> WriterWithNoValue s b

at <interactive>:1352:12-89
In the first argument of sf, namely _
In the expression: sf _
In a pattern binding: (WriterWithNoValue sfSideEffects) = sf _
Relevant bindings include

sf :: a -> WriterWithNoValue s b (bound at <interactive>:1354:42)
lSideEffects :: s (bound at <interactive>:1354:28)
(>>=) :: WriterWithNoValue s a

-> (a -> WriterWithNoValue s b) -> WriterWithNoValue s b
(bound at <interactive>:1354:3)

Constraints include Monoid s (from <interactive>:1349:10-48)

It’s easy to see why: the unwrapped type of <*> is s -> s -> s, which is satisfied by mappend, but >>= has
unwrapped type s -> (a -> s) -> s and since we cannot assume any properties of a we are unable to create
an a to pass to the “step” function! Thus, we can clearly see how the effects of an Applicative are independent
of the value computation, but for a Monad they are fundamentally linked.
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