Array Programming

CS242
Lecture 15

Review

- We've studied two function-based programming calculi
- SKI combinators
- Lambda Calculus
- In practice, lambda calculus has proven far more popular
- The basis for functional languages
- Used to model and understand most programming features
- State, exceptions, continuations, ...
- But combinator programming is not just theoretical

Overview

- In practice, combinator programming is used most with collections
- And particularly arrays
- Benefits
- Conciseness: Bulk operations over the entire collection
- Iteration/recursion is "baked in" to the operations
- Performance: Leave the details of the implementation the underlying system
- Might be very different for different hardware, e.g., CPUs or GPUs

An Example

- Two combinators
- o function composition
- map apply a function to every element of a list/array
- Semantics
- map $f[1,2,3]=[f 1, f 2, f 3]$
- map (+1) [1, 2, 3] = [2, 3, 4]

Consider the program:

(map f) o (map g)

In a conventional language

```
array a[n],b[n],c[n]
for i= 1,a.len {
    b[i] = f(a[i])
}
for j = 1,a.len {
    c[j] = g(b[j])
}
```


Comparison, Part I

Consider the program:
(map f) o (map g)

Much more concise!

Why: Conventional version uses general control structures. Combinator version uses a higher-order function (map) that captures exactly the specific iteration pattern needed.

In a conventional language

```
array a[n],b[n],c[n]
for i = 1,a.len {
    b[i] = f(a[i])
```

\}
for $\mathrm{j}=1$, a.len $\{$
$c[j]=g(b[j])$

Comparison, Part I

Consider the program:

(map f) o (map g)

Easier to optimize!

An algebraic law:
(map f) o (map g) $=\operatorname{map}(\mathrm{f} \circ \mathrm{g})$

This transformation eliminates the intermediate list/array.

Much harder to recognize when written with explicit for-loops.

```
```

In a conventional language

```
```

In a conventional language
array a[n],b[n],c[n]
array a[n],b[n],c[n]
for i= 1,a.len {
for i= 1,a.len {
b[i] = f(a[i])
b[i] = f(a[i])
}
}
for j = 1,a.len {
for j = 1,a.len {
c[j] = g(b[j])
c[j] = g(b[j])
}

```
```

}

```
```


A Digression

An algebraic law:
(map f) o (map g) $=\operatorname{map}(\mathrm{f} \circ \mathrm{g})$

But what if we are programming in some monad?
E.g., with state or exceptions?

History (Review)

- First combinator-based programming language was API
- "A Programming Language"
- Designed by Ken Iverson in the 1960's
- Designed for expressing pipelines of operations on bulk data
- Array programming
- Basic data type is the multidimensional array
- The average of a vector of numbers: $\{(+\neq \omega) \div \not \equiv \omega\}$

APL's Legacy

- Marketed by IBM starting in 1968
- Eventually other companies also offered APL products
- Very influential
- At least 50 subsequent array programming langauages
- Recent increased interest with the rising importance of array-based applications (e.g., deep learning) and
 GPUs
- Trivia: You can buy special APL keyboards today!

From APL to NumPy

- In practice, combinator programming is used most with collections
- And particularly arrays
- Benefits
- Conciseness: Bulk operations over the entire collection
- Iteration/recursion is "baked in" to the operations
- Performance: Leave the details of the implementation to the underlying system
- Might be very different for different hardware, e.g., CPUs or GPUs
- The most popular of these interfaces today is NumPy
- But note, python has imperative features
- So programs tend to be a mix of styles, including using variables, state, etc.

A Brief NumPy Tutorial

A short overview of NumPy arrays

- Defining
- Shape
- Broadcasting
- Views
- Filters

Using NumPy

\# This line will always appear in a NumPy program import numpy as np

Defining an Array

import numpy as np
\# initialize an array A of 10 elements with the integers $0 . .9$
A = np.arange(0,10)

Example: Adding Arrays

import numpy as np
A = np.arange $(0,10)$
\# addition is pointwise if the dimensions match np.add(A,A)

Reshaping

import numpy as np
A = np.arange $(0,10)$
\# Reshaping is a general operation that changes array dimensions.
\# Normally defines a view: creates an alias of the array -- does
\# not make a copy.
\# view the elements of A as a 2×5 array
A.reshape $(2,5)$
\# view the elements of A as a 10×1 (column) array
A.reshape(10,1)
\# Note that reshaping would be very difficult in a static type system!

Example: Outer Product

import numpy as np
A = np.arange $(0,10)$
\# We can use a combination of reshape and broadcast to define a \# concise outer product.
np.multiply(A,A.reshape(10,1))

Broadcasting

- Broadcasting takes two arrays of possibly different dimensions and casts them to arrays of the same dimension
- Rules for broadcast in an array operation A op B
- If one array has fewer dimensions, add dimensions of size 1 until both have the same number of dimensions
- For each dimension i
- If A and B have the same size in dimension i, do nothing
- If one of A and B has size 1 in dimension i, replicate data in the dimension to the same size as the other array
- If A and B have different sizes in dimension i and neither is 1 , throw an error
- Example
- $A^{*} 5$
- The 5 (a 0-D array) is promoted to a 1-D array of 5's of the same length as A

Slicing

import numpy as np
A = np.arange $(0,10)$
\# slicing defines views (aliases) of subsets of an array
A[3:] \# slice of $4^{\text {th }}$ element to the end of the array
A[:-3] \# slice up to the $4^{\text {th }}$ element from the end of the array
A[1:-1] \# slice of all but the first and last elements of the array
A.reshape(2,5)[:,1:3] \# slicing in multiple dimensions
A.reshape(2,5)[0:2,1:3] \# same slice written a different way

Example: Moving Average

import numpy as np
A = np.arange $(0,10)$
\# cumulative sum is one of many NumPy built-in array functions
$B=$ np.cumsum (A)
\# moving average of A with a window of size 3
(B[3:] - B[:-3]) / 3.0

Masks

import numpy as np
A = np.arange(0,10)
\# Using an array in a predicate returns an array of Boolean results
\# Here broadcasting promotes 5 to a 1D array of 5's
A >5
A $<=5$
$(2 * A)==\left(A^{* *} 2\right)$

Filters

import numpy as np
A = np.arange(0,10)
\# Boolean arrays can be used as array indices to filter arrays
$A[A>5]$
$A[A<=5]$ $A\left[(2 * A)=\left(A^{* *} 2\right)\right]$ \# elements x of A where $2 * x==x^{* *} 2$

A Bigger Example: The Game of Life

- The Game of Life is played on 2D grid in time steps
- Grid cells are either live or dead
- A cell is live or dead at time $t+1$ based on its neighbors at time t
- Cells at the world's edge are always dead
- Defined by George Conway in 1969
- An early example of cellular automata

Rules

- A live cell with < 2 neighbors dies
- From loneliness

- A live cell with > 3 neighbors dies
- From overcrowding
- A live cell with 2 or 3 neighbors survives
- A dead cell with 3 neighbors becomes live

The Game of Life

import numpy as np
$Z=n p . z e r o s((300,600))$
$Z[1:-1,1:-1]=n p . r a n d o m \cdot r a n d i n t(0,2, n p . s h a p e(Z[1:-1,1:-1])) \quad \# 0$ is dead, 1 is live
while True:

$$
\begin{aligned}
& N=(Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2]+Z[1:-1,2:]+ \\
& \text { Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:]) } \\
& \text { birth }=(\mathrm{N}==3) \&(\mathrm{Z}[1:-1,1:-1]==0) \\
& \text { survive }=((\mathrm{N}==2) \mid(\mathrm{N}==3)) \&(Z[1:-1,1:-1]==1) \\
& \text { Z[:,:] = } 0 \\
& \text { Z[1:-1, 1:-1][birth | survive] = } 1
\end{aligned}
$$

Picture

$$
\begin{aligned}
N= & (Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2] \quad+Z[1:-1,2:]+ \\
& Z[2:, 0:-2]+Z[2:, 1:-1]+Z[2:, 2:])
\end{aligned}
$$

Summing these 8 subarrays computes the number of live neighbors for each cell in the interior of the space.

Explanation

\# N is a 2D array of the number of neighbors of each cell
\# birth is a 2D Boolean array; a cell is true if it is has 3 neighbors and is dead birth $=(N==3) \&(Z[1:-1,1:-1]==0)$
\# survive is a 2D Boolean array; a cell is true if it is has 2 or 3 neighbors and is live survive $=((N==2) \mid(N==3)) \&(Z[1:-1,1:-1]==1)$
\# create a new generation
\# the interior cells of Z are live if they are born or survive the previous time step
$\mathrm{Z}[:,:]=0$
Z[1:-1, 1:-1][birth | survive] = 1

The Game of Life

import numpy as np
$Z=n p . z e r o s((300,600))$
$Z[1:-1,1:-1]=n p . r a n d o m \cdot r a n d i n t(0,2, n p . s h a p e(Z[1:-1,1:-1])) \quad \# 0$ is dead, 1 is live
while True:

$$
\begin{aligned}
& N=(Z[0:-2,0:-2]+Z[0:-2,1:-1]+Z[0:-2,2:]+ \\
& Z[1:-1,0:-2]+Z[1:-1,2:]+ \\
& \text { Z[2: , 0:-2] + Z[2: , 1:-1] + Z[2: , 2:]) } \\
& \text { birth }=(\mathrm{N}==3) \&(\mathrm{Z}[1:-1,1:-1]==0) \\
& \text { survive }=((\mathrm{N}==2) \mid(\mathrm{N}==3)) \&(Z[1:-1,1:-1]==1) \\
& \text { Z[:,:] = } 0 \\
& \text { Z[1:-1, 1:-1][birth | survive] = } 1
\end{aligned}
$$

Summary

- Combinator calculi are important in practice for array/collection programming
- Where thinking in terms of bulk operations with built-in iteration is useful
- Often useful in parallel implementations
- Because the combinators can be high-level enough that the programmer doesn't need to be aware of parallelism at all
- Combinators are also important in program transformations
- Much easier to design combinator-based transformation systems
- Some compilers (Haskell's GHC) even translate into an intermediate combinator-based form for some optimizations

