Program Verification via Type Theory

CS242

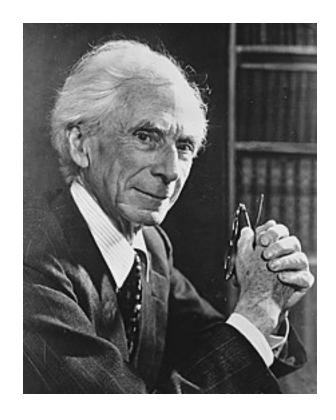
Lecture 17

Program Verification

- Proving properties of programs
- But not just that programs are well-typed
 - Much deeper, almost arbitrary properties
 - And often verifying full functional correctness
- Components
 - A specification: What property the program is supposed to have
 - A proof: Written mostly manually
 - A proof assistant: Supports defining the concepts, managing the proof, checking the proof, some automation of easy parts of the proof
- Proof assistants are based on type theory

Type Theory

- Pioneered by Bertrand Russell in the early 20th century
 - And greatly extended in computer science
- Original goal: A basis for all mathematics
 - An alternative to set theory
- Allows the formalization of
 - Programs
 - Propositions (types)
 - Proofs that programs satisfy the propositions
 - Uniformly in one system



Caveats

There are multiple versions of type theory

- We will look at one, and mostly by example
 - At the level we consider, there aren't significant differences with other approaches
- Type theory is a big topic
 - Whole courses are devoted to it
 - (But the same is true of other topics in this class!)

Lambda Application and Abstraction Rules

$$A \vdash e_1 : t \rightarrow t'$$

$$A \vdash e_2 : t$$

$$A \vdash e_1 e_2 : t'$$

$$A \vdash e_1 e_2 : t'$$
[App]

```
\begin{array}{ll}
A, x : t \vdash e : t' \\
\hline
A \vdash \lambda x.e : t \rightarrow t'
\end{array}

[Abs]
```

```
If e_1: t \rightarrow t' and e_2: t,
then e_1 e_2 has type t'.
```

If assuming x: t implies e: t',
then
$$\lambda x.e: t \rightarrow t'$$
.

Function Type Elimination

Function Type Introduction

Ignore the Programs for a Moment ...

$$A \vdash e_1 : t \rightarrow t'$$

$$A \vdash e_2 : t$$

$$A \vdash e_1 e_2 : t'$$

$$A \vdash e_1 e_2 : t'$$

$$A \vdash e_1 e_2 : t'$$

$$\begin{array}{ll}
A, x : t \vdash e : t' \\
\hline
A \vdash \lambda x.e : t \rightarrow t'
\end{array}$$
[Abs]

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t'.

Implication Elimination (modus ponens)

If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Implication Introduction

Types As Propositions

$$\begin{array}{c} A \vdash e_1 \colon t \to t' \\ \\ \hline A \vdash e_2 \colon t \\ \hline \\ A \vdash e_1 e_2 \colon t' \end{array} \qquad \begin{array}{c} A, x \colon t \vdash e \colon t' \\ \\ \hline \\ A \vdash \lambda x.e \colon t \to t' \end{array} \qquad [Abs] \end{array}$$

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t'. If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Here we regard the types as propositions: If we can prove certain propositions are true, then we can prove that other propositions are true.

But what are the proofs?

Programs as Proofs

$$A \vdash e_1 : t \rightarrow t'$$

$$A \vdash e_2 : t$$

$$A \vdash e_1 e_2 : t'$$

$$A \vdash e_1 e_2 : t'$$
[App]

$$\begin{array}{ll}
A, x : t \vdash e : t' \\
\hline
A \vdash \lambda x.e : t \rightarrow t'
\end{array}$$
[Abs]

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t'. If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Answer: The programs! e: t is a proof that there is a program of type t.

The Curry-Howard Isomorphism

- There is a isomorphism between programs/types and proofs/propositions.
- Two interpretations of ⊢ e: t
- We have a proof that the program e has type t
 - → is a constructor for function types
- e is a proof of t
 - → is logical implication

Discussion

This seems interesting ... but is it useful?

Not so far

• If we use more expressive types, we can express more propositions.

We need more than implication!

Propositional Logic

• As an example, we show how to define the rest of propositional logic

- This is just one of many theories we could define
 - But a particularly useful one

- We will define:
 - And
 - Or
 - Not

And

$$\begin{array}{c} A \vdash e: t_1 \land t_2 \\ A \vdash e: t_1 \land t_2 \end{array} \qquad \text{[And-Elim-Left]} \\ A \vdash e: t_1 \\ \hline A \vdash e: t_2 \\ \hline A \vdash e: t_1 \land t_2 \end{array} \qquad \begin{array}{c} A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \end{array} \qquad \text{[And-Elim-Right]} \\ \hline A \vdash ?: t_2 \end{array}$$

What program is a proof of $t_1 \wedge t_2$?

Pairs

$$\begin{array}{c} A \vdash e: t_1 \land t_2 \\ A \vdash e.left: t_1 \\ A \vdash e_2: t_2 \\ \hline A \vdash (e_1, e_2): t_1 \land t_2 \end{array} \qquad \begin{array}{c} A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \end{array} \qquad \begin{array}{c} A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \end{array} \qquad \begin{array}{c} A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \end{array} \qquad \begin{array}{c} A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \\ \hline A \vdash e: t_1 \land t_2 \\ \hline \end{array}$$

Or

$$A \vdash e : t_1$$

$$A \vdash e : t_1 \lor t_2$$

$$A \vdash e : t_1 \lor t_2$$

$$A \vdash e : t_2$$

$$A \vdash e : t_1 \lor t_2$$

Hmmmm ...

The Or-Elim rule isn't obvious

• We need to exhibit a program that works regardless of whether e is an element of t_1 or t_2 .

- Solution
 - The elimination is done by another program that does a case analysis

Or Elimination

$$A \vdash e_0 : t_1 \lor t_2$$
 $A, x : t_1 \vdash e_1 : t_0$ $A, x : t_2 \vdash e_2 : t_0$ [Or-Elim]

 $A \vdash (\lambda x. \text{ case } x \text{ of } t_1 \rightarrow e_1; t_2 \rightarrow e_2) e_0 : t_0$

Discussion

- Using a case analysis makes sense to computer scientists
 - Do one thing if the list is Nil / n = 0
 - Do something else if the list has at least one element/ n > 0
- But this is not the "or" of classical logic
 - In constructive logic, we must construct evidence for everything we prove
 - To use a disjunction, we must know which case we are in
- A dual explanation
 - To create a disjunction, we must compute a value of one of the types
- Thus $t \vee \neg t$ is not an axiom of this system!
 - And this is the only classical axiom that must be excluded

Negation

- $\neg p$ is defined as $p \rightarrow false$
 - Proposition p implies a contradiction

False is the empty type – there is no evidence for false

- Thus ¬p either does not have any elements, or only non-terminating functions
 - Depending on what else is included in the theory we are using

What is Negation Good For?

There can be uses for negation

- If we are just interested in proving things, proof by contradiction is an important technique
 - Recall one goal is to formalize mathematics
- But there are also computational interpretations

Type Theory for Continuations (Sketch)

Recall
$$\neg p = p \rightarrow false$$

In pure lambda calculus, a function of type $\neg p$ can't be called

- Because false has no elements in its type
- But in a language with continuations:
 - Recall that a continuation has the form λv.e and does not return when called
 - So it is sensible to give continuations a type $p \rightarrow false = \neg p$

Constructive vs. Classical Logic

- Constructive logic gives us programs we can run
- Type theory can also have classical axioms
 - What axioms are used is not the distinguishing feature of type theory
 - But if we use classical logic, we also lose the ability to use the proofs as programs, as they are no longer constructive
- In applications to software, we are generally interested in constructive proofs

Summary

- We have shown how to define propositional logic in type theory
 - Give sensible type rules for and, or and not
 - Show how to construct programs that have the postulated types
- Example: We can prove $(a \rightarrow b) \rightarrow (a \rightarrow c) \rightarrow (a \rightarrow b \land c)$

Taking It to the Next Level

- We want to be able to define new kinds of theories within the system
- and, or, & not should definable within the system
- The type checking rules should also be definable

Boolean Connectives Revisited

- What are and, or and not?
- They are functions that take types and construct new types
- Introduce a new type Type that contains all types
 - Type = { Int, Bool, Int \rightarrow Int, ... }
- and: Type \rightarrow Type
- or: Type \rightarrow Type \rightarrow Type
- not: Type → Type

Inference Rules Revisited

• An inference rule is a function that takes proofs of propositions as arguments and produces a proof of a proposition as a result

Define a new type Proof

- And-Intro: Proof \rightarrow Proof \rightarrow Proof
- And-Elim-Left: Proof → Proof
- And-Elim-Right: Proof → Proof

Review

So now we can:

- Define new types
- Define new type combinators (and, or, not ...)
- Define new inference rules (and-intro, ...)
- All using a uniform system based on types
- Note the system also checks type functions and inference rules are correctly used
 - E.g., we can only build valid proofs

Are We Done?

Not yet

- There are three more important features of type theories:
 - Type stratification
 - Inductively defined data types
 - Pi types

Type Stratification

Recall we ``Introduce a new type Type that contains all types''

```
• Type = { Int, Bool, Int → Int, ... }
```

• So is Type ∈ Type ?

And Now ... A Little Set Theory

- Recall in the early 20th century there was a systematic effort to understand the foundations of logic
 - As part of the goal of formalizing mathematics
- Set theory was recognized as a potential foundation

Why Set Theory?

• A function f can be represented as a set of (input,output) pairs:

$$\{(x_i,y_i) \mid f(x_i) = y_i\}$$

Natural numbers:

$$0 \cong \emptyset$$

Succ(n) $\cong n \cup \{n\}$

• And so on ...

Russell's Paradox

Consider $R = \{ x \mid x \notin x \}$

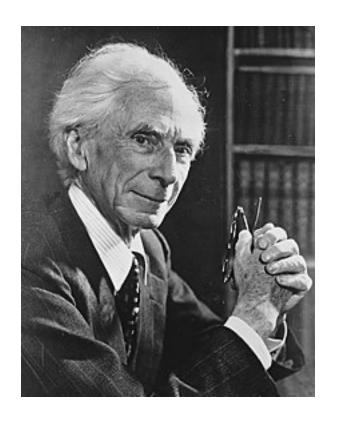
Now we can easily show:

$$R \notin R \Rightarrow R \in R$$

 $R \in R \Rightarrow R \notin R$

So we conclude:

$$R \in R \Leftrightarrow R \notin R$$



Implications

- Russell's paradox showed naïve set theory is inconsistent
 - Can prove ``false is true'' and so can prove anything
 - Not a great foundation for mathematics!
- Led to a reconsideration of the foundations of set theory
 - Over a couple of decades

- One conclusion: No set could be an element of itself
 - Set theory should be well-founded

What Does Well-Founded Mean?

- There is no set of all sets
- Instead, there is an infinite hierarchy of stratified sets
- We define ``small'' sets at stratum 0
- The set of all level 0 sets is a stratum 1 set
- The set of all level 1 sets is a stratum 2 set
- ...
- In this way no set can be an element of itself
 - Stratum *n* sets can only contain small sets of stratum *n* and sets of strata less than *n*
- Similar to the definition of ordinals

Back To Types ...

- Recall that types are sets
 - So Russell's paradox applies to types as well

- Implies we will need a type hierarchy
 - In a consistent type system
 - The set of all types lives at a higher level in the hierarchy than ordinary types

Ordinary Types

0 : Int

 $succ: Int \rightarrow Int$

add: Int \rightarrow Int \rightarrow Int

true: Bool

false: Bool

and: Bool \rightarrow Bool \rightarrow Bool

Next Level ...

• What are Int, Bool, $\alpha \rightarrow \beta$, ...?

They are types

• Int : Type

Bool: Type

• Int \rightarrow Int: Type

- Int, Bool, etc. are at level 0 of the type hierarchy
- Type is at level 1

Next Level ...

What are → and and?

- They are functions of types that produce types
 - \rightarrow : Type \rightarrow Type
 - and: Type \rightarrow Type
- These are functions that operate on elements of type level 1

Inductively Defined Data Types

- Dependent type theories generally include inductively defined data types as a primitive concept
 - So users can define natural numbers, lists, trees, etc.
 - With constructors of the appropriate types
- We have already talked about how to represent inductively defined data types as lambda terms in previous lectures.
 - Nothing new here ...

Pi Types

What we have discussed so far is still missing an important feature

- We can't express type functions that depend on their arguments
- Example cons: $\alpha \to \text{List}(\alpha) \to \text{List}(\alpha)$
 - What is the type of cons?
 - Explanation 1: cons has a family of types indexed by a parameter α
 - Explanation 2: cons has many types, one for each α
 - a product or intersection of an infinite set of types

Pi Types

Defining the List data type:

List: Type \rightarrow Type

Cons: $\Pi \alpha$: Type. $\alpha \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\alpha)$

Nil: $\Pi \alpha$: Type. List(α)

Polymorphic types are an example of *dependent types*: The type depends on a parameter. Note how Π functions like \forall .

There is also a corresponding sum type Σ that functions like \exists

Pi Types

The parameter in a Pi type doesn't have to range over Type.

A polymorphic array that includes its length in the type:

Array: Type \rightarrow Int \rightarrow Type

mkarray: $\Pi \alpha$: Type. $\Pi \beta$: Int. $\alpha \rightarrow \beta \rightarrow$ Array (α, β)

Here β is an integer – which could be any expression of type Int!

Discussion

- Without Pi types, type theory is very limited
 - E.g., simply typed lambda calculus
- Pi types are extremely powerful
 - The construct for creating infinite families of types
 - The signature feature of dependent type theories
 - Play a somewhat similar role to set comprehension in set theory
- Dependent type systems are often undecidable
 - Performing computation as part of type checking is bound to quickly run into computability issues!

Type Theory

- A foundation for all mathematics
 - Especially constructive mathematics
 - Sufficiently powerful to prove anything we can think of proving
 - And thus also a foundation for verifying the correctness of software

Key features

- Isomorphism of programs/types with proofs/propositions
- Type hierarchy allows uniform definition of types, type operations, proofs, ...
- Dependent types allow very expressive (even to the point of undecidability) types to be constructed

Type Theory in the Real World

Type theory has been used to verify the correctness of real systems

- CompCert
 - A formally verified (subset of) C compiler
- Sel4
 - A formally verified OS microkernel
 - Has many but not all features of a real OS

State of Practice

- Compcert and Sel4 show that formal verification of significant systems using type theory-based proof assistants is possible
- Compcert and Sel4 have very high levels of assurance
 - Debugging is not an issue
 - Guaranteed, for example, to be extremely secure
- But Compcert and Sel4 have shown the software engineering costs of full formal verification are still high
 - Sel4 has over 1M lines of proofs
 - Modifications may require much more reproving than recoding
- The biggest barrier for most systems, though, is having the specification
 - To use a theorem prover, you first have to state a theorem to prove!