The Lean Proof Assistant

CS242 Lecture 18

Alex Aiken CS 242 Lecture 18

Review

- Dependent types are a foundation for mathematics
 - And typed programming
- A single formalism for defining programs, proofs, and proof rules
 - And ensuring they are used in a consistent way
- Relies on constructive interpretations of mathematics
 - We must construct (compute) evidence for every assertion
 - Constructive proofs exclude proofs by contradiction

Once More, From the Top ...

- Today we will look at Lean (version 3)
- Illustrate basic features with examples
- Focus on using Lean for proofs
 - Not exploring new type theory

Basics

Type assertions are written ``e : t'', meaning expression e has type t Examples:

constant n : nat constant f : nat -> nat

The #check command prints out information about a name

• Useful for debugging

#check n #check f #check f n

Browser-Based Lean

- There is a nice WebAssembly implementation of Lean
 - Simply type expressions into the browser and see the results
 - Makes it easy to experiment

https://leanprover-community.github.io/lean-web-editor/

Recall: Programs as Proofs

 $A \vdash e_1 : t \rightarrow t'$ $A \vdash e_2 : t$ $A \vdash e_1 e_2 : t'$ [App]

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t '. $\begin{array}{c} A, x: t \vdash e: t' \\ \hline A \vdash \lambda x. e: t \rightarrow t' \end{array}$ [Abs]

If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Function Definitions

- Lambda calculus (or implication) is built-in to Lean
- Two equivalent definitions of a function:

def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := \lam g x => g x

Notes

def app (g: nat -> nat) (x:nat) : nat := g x def app2 : (nat -> nat) -> nat -> nat := λ g x, g x

- Lean takes unicode seriously!
- Note λ 's can have multiple variables (no need to repeat λ)
- The punctuation is different from other languages
 - Definition uses := instead of =
 - Write λx , e not λx . e
 - A list of variables is separated by spaces, not commas
 - Parens often needed if variables are given types (c.f., the arguments to app)
 - Types can often be omitted, but not always
 - Lean has type inference, but still need enough types for Lean to figure out all the types

Polymorphic Functions

def polyapp (α : Type) (g: $\alpha \rightarrow \alpha$) (x: α) : α := g x def polyapp2 : $\Pi \alpha$: Type, ($\alpha \rightarrow \alpha$) -> $\alpha \rightarrow \alpha$:= $\lambda t g x, g x$ def polyapp3 : $\forall \alpha$: Type, ($\alpha \rightarrow \alpha$) -> $\alpha \rightarrow \alpha$:= $\lambda t g x, g x$

- These polymorphic versions take a type argument
 - And it is a dependent type the type of the function depends on the type argument!
 - Which is why we use **□** (or ∀, they are synonyms)
- Unicode: \Pi is Π , \forall is \forall , \a is α

Propositions as Types

```
A theorem:
constants p q : Prop
theorem t1 : p -> q -> p := \lambda hp: p, \lambda hq : q, hp
```

- But Prop = Type
- And theorem = def!
- Just alternative syntax to emphasize proofs instead of computation

And More Options

• We could also write this proof

```
theorem t2 : p \rightarrow q \rightarrow p :=
assume hp : p,
assume hq : q,
hp
```

- This means *exactly* the same thing
- assume is just longhand for λ

The Polymorphic Version

We could also write this proof so it works for any p and q

```
theorem t3 (p,q: Prop) : p \rightarrow q \rightarrow p :=
assume hp : p,
assume hq : q,
hp
```

Conjunction: And Introduction

```
A few proofs of p \rightarrow q \rightarrow p \land q
```

```
lemma a1 (hp : p) (hq : q) : p \land q := and.intro hp hq

or

lemma a2 : p \Rightarrow q \Rightarrow p \land q := \lambda hp: p, \lambda hq : q, and.intro hp hq

or

lemma a3 : p \Rightarrow q \Rightarrow p \land q :=

assume hp: p,

assume hq: q,

and.intro hp hq

or

lemma a4 (hp : p) (hq : q) : p \land q := \backslash < hp, hq \backslash >
```

Note: lemma is another synonym for def, the angle brackets are special syntax for and.intro

Conjunction: And Elimination

Proofs of $p \land q \rightarrow q \land p$

lemma a5 (hpq: $p \land q$) : $q \land p$:= and.intro (and.right hpq) (and.left hpq)

lemma a6 (hpq: $p \land q$) : $q \land p$:= and.intro hpq.right hpq.left

lemma a7 (hpq: $p \land q$) : $q \land p := \langle hpq.right, hpq.left \rangle$

Disjunction: Or Introduction

```
Proofs of p \rightarrow p \lor q and q \rightarrow p \lor q
```

```
lemma o1 (hp : p) : p V q := or.intro_left q hp
```

```
lemma o2 : q \rightarrow p \lor q :=
assume hq: q,
or.intro_right p hq
```

Disjunction: Or Elimination

```
Proofs of p \lor q \lor q \lor p
```

```
lemma o3 (h : p V q) : q V p :=
  or.elim h
  (assume hp : p,
    or.intro_right q hp)
  (assume hq : q,
    or.intro_left p hq)
```

or.elim does a case analysis Specifically, or.elim is a function taking three arguments:

an object of type $p \lor q$ a function of type $p \rightarrow r$ a function of type $q \rightarrow r$

In this example $r = q \vee p$

Show: Making the Conclusion Explicit

```
lemma o3 (h: p \lor q) : q \lor p :=
 or.elim h
   (assume hp : p,
    show q V p,
    from or.intro right q hp)
   (assume hq : q,
    show q V p,
    from or.intro_left p hq)
```

- show allows the user to state the goal
 - The proposition (type) we are trying to prove
- Helpful for making proofs clearer
- And detecting bugs in the proof earlier

Structuring Longer Proofs

```
lemma a8 (h : p \land q) : q \land p :=
have hp : p, from and.left h,
have hq : q, from and.right h,
show q \land p, from and.intro hq hp
```

have h from t in e is equivalent to (λh.e) t

Recall (λ h.e) t is also equivalent to let h = t in e

Useful for structuring longer arguments in a series of steps

A More Complex Lemma

```
(p \rightarrow q) \rightarrow (p \rightarrow r) \rightarrow (p \rightarrow q \land r)
```

```
lemma imp (f1: p -> q) (f2: p -> r) (x:p) : q \ r :=
    have hq: q, from f1 x,
    have hr: r, from f2 x,
    show q \ r, from ( hq, hr )
```

Quantifiers

• We've already seen examples of universal quantifiers

• Recall

def polyapp (α : Type) (g: $\alpha \rightarrow \alpha$) (x: α) : α := g x def polyapp2 : $\Pi \alpha$: Type, ($\alpha \rightarrow \alpha$) -> $\alpha \rightarrow \alpha$:= $\lambda t g x, g x$ def polyapp3 : $\forall \alpha$: Type, ($\alpha \rightarrow \alpha$) -> $\alpha \rightarrow \alpha$:= $\lambda t g x, g x$

If we define polymorphic functions, we are carrying out universal proofs.

The intro and elimination of universal quantifiers is implicit in polymorphic type checking.

A very common case, though there are times we want explicit ∀-intro and ∀-elim.

Existential Quantifier Elimination

Eliminating an existential quantifier from $h: \exists x: t, p x$ has the form

```
exists.elim h
(assume y : t,
assume z : p y,
e)
```

Existential Quantifier Introduction

Consider a proposition of the form E(p)

```
The exists.intro p E(p) = \exists x. E(x)
```

We replace the subexpression p by the existentially bound variable

 Not entirely trivial, as p could be a complex expression that the system needs to search for in E(p)

A Proof with Quantifiers

If x is even, then x^2 is even.

definition even (x : nat) := $\exists k, x = 2 * k$

```
theorem x_even_x2_even (x: nat) (h: even x) : even (x * x) :=
exists.elim h
  (assume k,
    assume hk : x = 2 * k,
    show even (x * x),
    from exists.intro (k * x)
        (calc x * x = (2 * k) * x : by rw hk
        ... = 2 * (k * x) : by rw nat.mul_assoc
    )
)
```

Calculational Proofs and Tactics

calc x * x = (2 * k) * x : by rw hk ... = 2 * (k * x) : by rw nat.mul_assoc

Calc is a special proof mode for "calculation"

- Proofs that involve the transitivity of equality
- At each step we must show the justification for the equality
 - rw stands for "rewrite", any rule that involves an algebraic rewrite
 - rw hk means a substitution using the type of hk (recall hk: x = 2 * k)
 - rw nat.mulassoc means apply the associativity law for multiplication (x * y)* z = x * (y * z)
- Lean automates some patterns of rules (tactics)

Summary

- There are many more features of Lean
 - Many other propositions, functions, and proof combinators
 - Lots of libraries
 - Many other alternative shorthands
- With practice, writing proofs becomes like programming
 - Dependent type theory shows, in fact, that it is just programming!

Final Thoughts

Alex Aiken CS 242 Lecture 18

The Big Picture: Language Goals

Alex Aiken CS 242 Lecture 1

Language Goals

- Every programming language has as goals
 - Performance
 - Productivity
 - Safety
- But there are tradeoffs
- And different designs make different choices
 - One of the reasons we have so many programming languages

Tradeoffs: Productivity vs. Safety Proving Properties of Programs

Automatic, Low complexity

Automatic, High complexity Automatic or Semi-automatic Often undecidable Manual, Undecidable

Simply Typed Lambda Calculus Static Analysis

Invariant Inference

Dependent Types

Tradeoffs: Productivity vs. Safety Proving Properties of Programs

Automatic, Low complexity

Automatic, High complexity Automatic or Semi-automatic Often undecidable Manual, Undecidable

Gradual Types

Simply Typed Lambda Calculus

Every typed language Static Analysis

Every optimizing compiler

Invariant Inference

Still figuring this part out ...

Dependent Types

Emerging from the lab ...

Tradeoffs: Productivity vs. Performance

- Array programming languages support both!
- But ...
 - Limited to arrays
 - First-order no higher order functions, no objects ...

Tradeoffs: Performance vs. Safety

10 Versions of Matrix Multiply from Leiserson & Shun

Version	Implementation	Running time (s)		Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39 Aiken CS 242	1.76 Lecture 18	53,292	352.408	41.677

Tradeoffs: Performance vs. Safety

#10 is much more complicated than #1 !

Version	Implementation	Running time (s)		Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39 Aiken CS 242	1.76 Lecture 18	53,292	352.408	41.677

The Last Slide ...

- These tradeoffs explain why there are so many different languages
 - But there are many fewer language building blocks
 - Put together in endless variations
- New language technology is always coming
 - New ideas in programming
 - Changes in underlying hardware
 - Changes in needs (e.g., security)
- We have focused on
 - The building blocks of programming languages that have stood the test of time
 - New and emerging ideas in programming

Thanks!

Alex Aiken CS 242 Lecture 18