The Lean Proof Assistant

CS242
Lecture 18

Review

- Dependent types are a foundation for mathematics
- And typed programming
- A single formalism for defining programs, proofs, and proof rules
- And ensuring they are used in a consistent way
- Relies on constructive interpretations of mathematics
- We must construct (compute) evidence for every assertion
- Constructive proofs exclude proofs by contradiction

Once More, From the Top ...

- Today we will look at Lean (version 3)
- Illustrate basic features with examples
- Focus on using Lean for proofs
- Not exploring new type theory

Basics

Type assertions are written "e $: t$ ", meaning expression e has type t Examples:
constant n : nat
constant f : nat -> nat

The \#check command prints out information about a name

- Useful for debugging
\#check n
\#check f
\#check f n

Browser-Based Lean

- There is a nice WebAssembly implementation of Lean
- Simply type expressions into the browser and see the results
- Makes it easy to experiment
https://leanprover-community.github.io/lean-web-editor/

Recall: Programs as Proofs

$A \vdash \mathrm{e}_{1}: \mathrm{t} \rightarrow \mathrm{t}^{\prime}$
$\frac{\mathrm{A} \vdash \mathrm{e}_{2}: \mathrm{t}}{\mathrm{A} \vdash \mathrm{e}_{1} \mathrm{e}_{2}: \mathrm{t}^{\prime}} \quad[\mathrm{App}]$

From a proof of $t \rightarrow t^{\prime}$
and and a proof of t, we can prove t'.

If assuming t we can prove t^{\prime}, then we can prove $t \rightarrow t^{\prime}$.

Function Definitions

- Lambda calculus (or implication) is built-in to Lean
- Two equivalent definitions of a function:
def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := \lam g x => g x

Notes

def app (g: nat -> nat) (x:nat) : nat := g x
def app2: (nat -> nat) -> nat -> nat $:=\lambda g x, g x$

- Lean takes unicode seriously!
- Note λ 's can have multiple variables (no need to repeat λ)
- The punctuation is different from other languages
- Definition uses := instead of =
- Write λx, e not λx. e
- A list of variables is separated by spaces, not commas
- Parens often needed if variables are given types (c.f., the arguments to app)
- Types can often be omitted, but not always
- Lean has type inference, but still need enough types for Lean to figure out all the types

Polymorphic Functions

$$
\begin{aligned}
& \text { def polyapp }(\alpha: \text { Type) }(\mathrm{g}: \alpha->\alpha)(\mathrm{x}: \alpha): \alpha:=\mathrm{gx} \\
& \text { def polyapp2 }: \Pi \alpha: \text { Type, }(\alpha->\alpha)->\alpha->\alpha:=\lambda \operatorname{tgx}, \mathrm{gx} \\
& \text { def polyapp3 }: \forall \alpha: \text { Type, }(\alpha->\alpha)->\alpha->\alpha:=\lambda \mathrm{tgx}, \mathrm{gx}
\end{aligned}
$$

- These polymorphic versions take a type argument
- And it is a dependent type - the type of the function depends on the type argument!
- Which is why we use Π (or \forall, they are synonyms)
- Unicode: \backslash Pi is Π, \forall is \forall, \a is α

Propositions as Types

A theorem:
constants p q : Prop
theorem t1 : p-> q->p := $\lambda \mathrm{hp}: \mathrm{p}, \lambda \mathrm{hq}: \mathrm{q}, \mathrm{hp}$

- But Prop = Type
- And theorem = def!
- Just alternative syntax to emphasize proofs instead of computation

And More Options

- We could also write this proof
theorem t2: $\mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{p}:=$ assume hp:p, assume hq:q, hp
- This means exactly the same thing
- assume is just longhand for λ

The Polymorphic Version

- We could also write this proof so it works for any p and q
theorem t3 (p, q : Prop) : $\mathrm{p} \rightarrow \mathrm{q} \rightarrow \mathrm{p}:=$ assume hp:p, assume hq:q, hp

Conjunction: And Introduction

A few proofs of $p \rightarrow q \rightarrow p \wedge q$
lemma a1 $(h p: p)(h q: q): p \wedge q:=$ and.intro $h p h q$
or
lemma a2 : p $\rightarrow \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{q}:=\lambda \mathrm{hp}: \mathrm{p}, \lambda \mathrm{hq}: \mathrm{q}$, and.intro hp hq
or
lemma a3: p $\rightarrow \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{q}:=$
assume hp: p,
assume hq: q,
and.intro hp hq
or
lemma a4 (hp :p) (hq:q) : p $\wedge q:=\backslash<h p, h q \backslash>$

Note: lemma is another synonym for def, the angle brackets are special syntax for and.intro

Conjunction: And Elimination

Proofs of $p \wedge q \rightarrow q \wedge p$
lemma a5 (hpq: p $\wedge q): q \wedge p:=$ and.intro (and.right hpq) (and.left hpq)
lemma a6 (hpq: $p \wedge q$) : q $\wedge p:=$ and.intro hpq.right hpq.left
lemma a7 (hpq: $p \wedge q$) : q $\wedge p:=\langle$ hpq.right, hpq.left \rangle

Disjunction: Or Introduction

Proofs of $p \rightarrow p \vee q$ and $q \rightarrow p \vee q$
lemma o1 (hp : p) : p V q := or.intro_left q hp
lemma o2: $\mathrm{q} \rightarrow \mathrm{p} \vee \mathrm{q}:=$
assume hq: q,
or.intro_right phq

Disjunction: Or Elimination

Proofs of $p \vee q \rightarrow q \vee p$
lemma o3 (h:p p q) : q $\vee \mathrm{p}:=$ or.elim h
(assume hp: p, or.intro_right q hp) (assume hq: q, or.intro_left phq)
or.elim does a case analysis Specifically, or.elim is a function taking three arguments:
an object of type $p \vee q$
a function of type $p \rightarrow r$ a function of type $q \rightarrow r$

In this example $r=q \vee p$

Show: Making the Conclusion Explicit

lemma o3 $(\mathrm{h}: \mathrm{p} \vee \mathrm{q}): q \vee \mathrm{p}:=$ or.elim h
(assume hp : p,
show $q \vee p$, from or.intro_right q hp) (assume hq:q, show q $\vee \mathrm{p}$, from or.intro_left phq)

- show allows the user to state the goal
- The proposition (type) we are trying to prove
- Helpful for making proofs clearer
- And detecting bugs in the proof earlier

Structuring Longer Proofs

```
Iemma a8 (h:p ^q):q : p:=
```

 showqip,fromand.introhqhp
 have \(h\) from \(t\) in \(e\)
 is equivalent to
 (\(\lambda\) h.e) t
 Recall (λ h.e) t is also equivalent to
let $\mathrm{h}=\mathrm{t}$ in e

Useful for structuring longer arguments in a series of steps

A More Complex Lemma

$(p \rightarrow q) \rightarrow(p \rightarrow r) \rightarrow(p \rightarrow q \wedge r)$
lemma imp (f1: p->q) (f2: p->r) (x:p) : q $\wedge r:=$ have hq: q, from f1 x, have hr: r , from f 2 x , show $q \wedge r$, from $\langle h q, h r\rangle$

Quantifiers

- We've already seen examples of universal quantifiers
- Recall
def polyapp (α : Type) (g: $\alpha->\alpha$) (x: α) : $\alpha:=\mathrm{gx}$
def polyapp2: П α :Type, $(\alpha->\alpha)->\alpha->\alpha:=\lambda \operatorname{tgx}, \mathrm{gx}$
def polyapp3: $\forall \alpha$: Type, $(\alpha->\alpha)->\alpha->\alpha:=\lambda \operatorname{tgx}, \mathrm{gx}$

If we define polymorphic functions, we are carrying out universal proofs.

The intro and elimination of universal quantifiers is implicit in polymorphic type checking.

A very common case, though there are times we want explicit \forall-intro and \forall-elim.

Existential Quantifier Elimination

Eliminating an existential quantifier from $\mathrm{h}: \exists \mathrm{x}: \mathrm{t}, \mathrm{p} \times$ has the form
exists.elim h
(assume y:t,
assume z: py,
e)

Existential Quantifier Introduction

Consider a proposition of the form $\mathrm{E}(\mathrm{p})$

The exists.intro $p \mathrm{E}(\mathrm{p})=\exists \mathrm{x} . \mathrm{E}(\mathrm{x})$

We replace the subexpression p by the existentially bound variable

- Not entirely trivial, as p could be a complex expression that the system needs to search for in $E(p)$

A Proof with Quantifiers

```
If }x\mathrm{ is even, then }\mp@subsup{x}{}{2}\mathrm{ is even.
definition even (x : nat):= \existsk,x=2* k
theorem x_even_x2_even (x: nat) (h: even x) : even (x * x) :=
    exists.elim h
    (assume k,
    assume hk: x = 2 * k,
    show even (x* x),
    from exists.intro (k * x)
        (calc x*x = (2*k)*x : by rw hk
            =2 * (k*x) : by rw nat.mul_assoc
        )
    )
```


Calculational Proofs and Tactics

```
calc x*x = (2*k)*x : by rw hk
    ... = 2* (k*x) : by rw nat.mul_assoc
```

Calc is a special proof mode for "calculation"

- Proofs that involve the transitivity of equality
- At each step we must show the justification for the equality
- rw stands for "rewrite", any rule that involves an algebraic rewrite
- rw hk means a substitution using the type of hk (recall hk: $x=2^{*} k$)
- rw nat.mulassoc means apply the associativity law for multiplication $(x * y)^{*} z=x *(y * z)$
- Lean automates some patterns of rules (tactics)

Summary

- There are many more features of Lean
- Many other propositions, functions, and proof combinators
- Lots of libraries
- Many other alternative shorthands
- With practice, writing proofs becomes like programming
- Dependent type theory shows, in fact, that it is just programming!

Final Thoughts

The Big Picture: Language Goals

Language Goals

- Every programming language has as goals
- Performance
- Productivity
- Safety
- But there are tradeoffs
- And different designs make different choices
- One of the reasons we have so many programming languages

Tradeoffs: Productivity vs. Safety Proving Properties of Programs

Automatic, Low complexity

Simply Typed
Lambda Calculus

Automatic,
High complexity

Automatic or Semi-automatic Often undecidable

Manual, Undecidable

Tradeoffs: Productivity vs. Safety Proving Properties of Programs

Automatic,
Low complexity

	Gradual Types	Static Analysis	Invariant Inference

Tradeoffs: Productivity vs. Performance

- Array programming languages support both!
- But ...
- Limited to arrays
- First-order - no higher order functions, no objects ...

Tradeoffs: Performance vs. Safety

10 Versions of Matrix Multiply from Leiserson \& Shun

Version Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak	
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	C	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39	1.76	53,292	352.408	41.677

Tradeoffs: Performance vs. Safety

\#10 is much more complicated than \#1 !

Version Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak	
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	C	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39	1.76	53,292	352.408	41.677

The Last Slide ...

- These tradeoffs explain why there are so many different languages
- But there are many fewer language building blocks
- Put together in endless variations
- New language technology is always coming
- New ideas in programming
- Changes in underlying hardware
- Changes in needs (e.g., security)
- We have focused on
- The building blocks of programming languages that have stood the test of time
- New and emerging ideas in programming

Thanks!

