
Rust and C++ performance on the Algorithmic Lovasz Local
Lemma

ANTHONY PEREZ, Stanford University, USA

Additional Key Words and Phrases: Programming Languages

ACM Reference Format:
Anthony Perez. 2017. Rust and C++ performance on the Algorithmic Lovasz Local Lemma. 1, 1 (December 2017),
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 SUMMARY
The performance and ease of use of a programming language are two major considerations for
developers when choosing the appropriate language for a project. This work compares C++ and
Rust through the lens of performance and usability in both serial and concurrent contexts, and
uses the algorithmic Lovasz Local Lemma as a test-bed. Performance is evaluated quantitatively
through run time statistics collected over different instances of K-SAT while usability is evaluated
qualitatively. It was found that although both languages make trade-offs with respect to usability,
Rust outperforms C++ in both serial and parallel contexts. From this the author concludes that,
regardless of the performance of the optimal implementation in each language, non-optimal but
more practical implementations of similar development effort seem to result in higher performance
code in Rust, likely due to Rust’s ownership and safety features.

2 BACKGROUND
Performance and ease of use are two key design considerations when designing any programming
language. As previously mentioned, this work attempts to compare the Rust and C++ programming
languages along these two axes. Any performance comparison between two languages requires
a testing frame work to empirically verify its claims. In this work, we choose to implement the
algorithmic Lovasz Local Lemma (LLL) to solve constrained instances of the K-SAT problem. The
algorithmic LLL lends itself to performance comparisons as the algorithm is simple but non-trivial
and has both serial and parallel implementations that are provably correct. In order to provide a
context for the performance statistics, definitions and details of the problem instances (K-SAT) and
the solving algorithm (algorithmic LLL) are provided below.

2.1 K-SAT
The Boolean Satisfiability problem, or the SAT problem, has applications in EDA, automatic test
generation, logic synthesis, and AI [2]. K-SAT is a constrained instance of the Boolean Satisfiability

Author’s address: Anthony Perez, Stanford University, Stanford, CA, 23185, USA, aperez8@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
XXXX-XXXX/2017/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 A. Perez et al.

problem where the boolean formula is constrained to be the conjunction of disjunctions over K
variables. The following is an example of a satisfiable 3-SAT instance and its satisfying assignment.

ϕ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z)
assignment = {x : TRUE,y : FALSE, z : TRUE}

In this work we solve constrained instances of the K-SAT problem in which each variable appears
in at most 2k

ke clauses (disjunctions). This is done so that the Lovasz Local Lemma can be applied.

2.2 Lovasz Local Lemma
The algorithmic Lovasz Local Lemma (algorithmic LLL) [1] solves the following problem. Suppose
there is a set of bad events A = {A1, ...,An} that you wish to avoid. Let each event depend
on a set of variables and denote this set as vble(Ai) = {vi,1, ...,vi,ci }. This means that Ai is
a function of only vble(Ai). Let V denote the set of all these variables: V = ∪ivble(Ai). Let
d = maxAi |{Aj |vble(Ai)∩vble(Aj) , ∅}|. In other words,d is the maximum number of other events
that a single event depends on. Choose a distribution D over V , then if for all Ai , PrD[Ai] ≤ 1

e(d+1)
Algorithm 1 will find an assignment to V such that all bad events are avoided in an expected linear
number of resampling steps.
ALGORITHM 1: Algorithmic LLL
Function Lovasz_Local_Lemma

V ← sample from D ;
while ∃A ∈ A s.t. A is in a bad state do

vble(A) ← newly sampled values from D ;
end
Return V ;

end

We can map the abstractions in the algorithm description to K-SAT instances in the following
manner:
(1) Let Ai be the event that the ith clause is not satisfied.
(2) Let vble(Ai) be the variables in the ith clause.
(3) Let D be the Bernoulli(0.5) distribution (variables are true with probability 0.5).

We see that if variables are constrained to be in at most 2k
ke − 1 clauses then Pr [Ai] = 1

2k ≤
1

e(d+1) =
k
2k . Note that the algorithmic Lovasz Local Lemma presented here is a simplified version of the
algorithm.

3 APPROACH
3.1 Goals
The goal of this work is to provide a relative ranking of C++ and Rust in terms of both performance
and usability. The algorithm is guaranteed to find satisfying assignments if implemented correctly
and given K-SAT instances that fit the constrains of the problem, therefore correctness is not
evaluated. Performance is evaluated by timing the run-time of the algorithm using timers built in to
each language. Usability is evaluated by a qualitative comparison of the pain points of working in
each language. The full scope of this goal cannot be realized with a single experiment in a single test
environment. Therefore the author considers this paper a stepping stone toward future research on
the topic.

, Vol. 1, No. 1, Article . Publication date: December 2017.

Algorithmic Lovasz Local Lemma Performance :3

3.2 Experimental Setup
We seek to only vary the language in each trial of the experiment while keeping all other factors
constant. There are three parameters that control the size of the K-SAT problem (assuming all
variables are assigned randomly). These parameters are:
• the number of variables per clause (K),
• the number of clauses,
• and the number of variables.

The value of K and the number of clauses were varied to provide a comparison across several sizes
of the problem. The values of the number of clauses ranges from values that result in near-instant
solutions to the maximum value feasible on the available hardware. The value of K varies from
the minimum possible value under the constraints of the algorithimc LLL to a value for which
solutions are typically 2-3x faster than the minimum value. The number of variables is always set
to the minimum possible amount, as this is the most difficult setting. Five random instances were
generated for each settings of the parameters to the K-SAT problem to control randomness due to
the problem instance. Additionally, each problem instance was run 5 times to control randomness
due to the processor. Note that the problem instances used for bench-marking are the same across
both languages and across serial and parallel versions of the algorithm in order to provide a fair
comparison.

3.3 Why LLL
The algorithmic LLL is a very convenient algorithm for comparing the performance of two languages.
The algorithm exists as both serial and parallel versions, which allows comparisons to be made in
both contexts. Additionally, the problem the algorithm solves is interesting and difficult enough
that the algorithmic LLL is not a "toy" algorithm. Finally, the algorithm itself is fairly straight
forward, which makes analyzing potential performance gaps in the language easier.

3.4 Algorithm Design
3.4.1 Input/Output. The input and output (i.e. the signature) of the algorithm was the same

across languages and serial vs. parallel versions. As input, the algorithm is given a K-SAT object
which contains the following properties:
• "num_vars": An integer representing the number of variables.
• "k": An integer representing the number of variable in each clause.
• "num_clauses": An integer representing the number of clauses.
• "clauses": A vector containing Clause objects. Each clause object contains only a vector of
Variables. Each Variable is a struct containing an integer "id" representing the identity of the
variable and an integer "affinity" representing whether the literal in the clauses is negated or
not.

As output, the algorithm is expected to return a vector of booleans which corresponds to a satisfying
assignment for the problem instance. The ith element in the vector should correspond to the truth
value of the ith variable in the satisfying assignment.

3.4.2 Implementation. Both serial and parallel implementations of the algorithm maintain a
current assignment to the variables and update it in order to find the satisfying assignment. Both
implementations share two procedures:
• satisfied which checks if a clause is satisfied. satisfied runs in O(n).
• resample which samples a new assignment to a set of variables and overrides the current
assignment. resample runs in O(n).

, Vol. 1, No. 1, Article . Publication date: December 2017.

:4 A. Perez et al.

Refer to Algorithm 2 for the implementation of the serial algorithm and Algorithm 3 at the end of
the document for the implementation of the parallel algorithm.
ALGORITHM 2: Serial Algorithmic LLL
Function serial KSAT ksat_inst

assignment← a random boolean vector with size equal to the number of variables ;
while A clause was found to be unsatisfied do

forall Clause c in ksat_inst do
if not satisfied(c, assignment) then

resample(c, assignment) ;
end

end
end
Return assignment ;

end

3.4.3 Details. The algorithms above were implemented by the author without any existing code
base. In Rust, the crossbeam package was used to implement parallelism. In C++, only std::thread
was used to implement parallelism.
There is a serial algorithm that runs in expected O(n2k) time (rather than expected O(kn2) time)
but this algorithm was not explored for two reasons. The first is that the purpose of this work is
to compare languages not implement the most efficient algorithmic LLL. The second is that this
algorithm ran slower empirically.

4 RESULTS
4.1 Performance
4.1.1 Fairness. As was previously mentioned, the problem instances are the same across all

versions of the algorithm. Likewise, timing is always computed as the time from which the function
is called to when the function returns. Approximately equal time was spent across both languages
and the code structure is similar where appropriate.

4.1.2 Analysis. Figure 3 shows that run-time increases with the number of clauses in the K-SAT
instance while Figure 2 shows that the run-time decreases as the value of K increases. These
are both expected results. Although increasing K increases the size of the problem instance, the
expected fraction of unsatisfied clauses is 1

2k , and thus the run-time of the algorithm is expected
to decrease as K increases. Figure 1 provides run-time statistics for all choices of problem and
algorithm parameters. As expected, the parallel algorithmic LLL outperforms the serial algorithm
in Rust. Perhaps surprisingly, the parallel C++ algorithm was slower than the serial C++ algorithm.
We also see that in both serial and parallel contexts, Rust outperforms C++. CPU sampling reveals
that 60% of the time used by the parallel C++ algorithm was spent running and joining threads (.6
is the ratio of samples in std::thread and thread.join to samples in the function as a whole). This
means that the code pertaining to threading ran at least 3 times slower in C++ than in Rust in the
experiments in this work.

Its surprising that Rust outperforms C++ given that, within the realm of fast systems languages,
Rust optimizes for safety while C++ optimizes for speed. The performance difference could be
attributed to the following:
(1) Rust’s ability to enforce safety leads to code that compilers can better optimize.

, Vol. 1, No. 1, Article . Publication date: December 2017.

Algorithmic Lovasz Local Lemma Performance :5

Fig. 1. Scatter plot illustrating performance as K-SAT parameters vary. Numbers adjacent to points indicate
the run-time in milliseconds averaged over 5 problem instances (different assignment of variables to clauses)
with 5 trials each.

(2) Rust’s safety features lead developers to create code with better memory sharing between
threads.

These factors will be discussed in the next section, which describes the usability differences between
the two languages.

4.2 Language Design / Usability
One factor that needs to be considered is that neither the Rust nor C++ implementations of these
algorithms were optimal. It may be the case that the optimal C++ implementation outperforms the
optimal Rust implementation or vice-versa. However, the reality is that optimal performance is
difficult to achieve in practice and this leads to an argument for why Rust’s language design may
have lead to higher performing code.

4.2.1 Compiler. Most of the debugging time spent in Rust involved dealing with the compiler.
The compiler is fairly descriptive in informing the developer of ownership rule violations or other
issues specific to Rust. For errors that might occur in all languages, the author found that Rust
compiler error messages were more helpful than C++ compiler error messages, but this is offset by
C++’s IDE support. The trade off of dealing with compiler warnings was that there were almost no
logic errors, and no (non-compiler) errors due to misunderstanding the argument types of functions,
ownership of variables, or passing by value versus reference.

, Vol. 1, No. 1, Article . Publication date: December 2017.

:6 A. Perez et al.

Fig. 2. The number of clauses was fixed to 1,000,000 for all plots in this figure.

4.2.2 Code Organization. Dealing with errors of importing function across files was much easier
in Rust than in C++. Dealing with header files in C++ can be tedious, specifically regarding issues
due to importing the same header twice, dealing with naming collisions between functions, and
interpreting non-intuitive compiler errors. Importing modules was simpler in Rust, and compiler
error messages were easily interpretable.

4.2.3 IDE. Visual Studio was used to develop and profile the C++ code, while vim was used to
develop the Rust code. The author is not aware of a standard powerful IDE for Rust, while Visual
Studio seems to be fairly widespread. Visual studio far outclasses vim. Visual studio caught almost
all would-be compiler errors before compilation, especially syntax errors. Thanks to Visual Studio,
the vast majority of bugs were due issues with the code file structure and issues with logic rather
than syntax and language issues. The Rust development cycle was slowed down by having to write
out larger sections of code, then run the compiler, and then fix the compiler-found issues in the
code.

4.2.4 Threading. C++’s std::thread API was much simpler to use than Rust’s crossbeam API, but
std::thread had unexpected behavior. std::thread’s constructor will copy all arguments by value,
including reference arguments, and during implementation this lead to a silent bug (that was
eventually fixed) in which a large object was being copied by value. The bug did not result in
any warnings, but slowed performance significantly, and thus took a significant amount of time
to debug. In Rust, code that compiled generally worked, but the crossbeam package and Rust’s
ownership rules made the process of getting the code to compile take much longer than in C++.
The assignment vector had to be wrapped in an Arc pointer in Rust due to its ownership rules,

, Vol. 1, No. 1, Article . Publication date: December 2017.

Algorithmic Lovasz Local Lemma Performance :7

Fig. 3. The value of K was set to 6 for all plots in this figure.

although this was inefficient in this instance. Likewise, dealing with closure and their scoping rules
was more time-consuming than std::thread’s function pointer based constructor.

, Vol. 1, No. 1, Article . Publication date: December 2017.

:8 A. Perez et al.

ALGORITHM 3: Parallel Algorithmic LLL. Note that the get_independent computation is
not required to wait for all threads of computation in the get_unsatisfied computation to
finish. In the actual implementation, these two functions are interwoven so that the unsatisfied
clauses are processed as soon as a thread makes them available.
Function get_unsatisfied KSAT ksat_inst, Vec<bool> assignment

chunks← split the clauses in ksat_inst into chunks ;
forall chunk in chunks, in parallel do

unsatisfied_clauses← an empty vector ;
forall Clause c in chunk do

if not satisfied(c, assignment) then
Add c to unsatisfied_clauses ;

end
end

end
Return the concatenation of all unsatisfied_clauses vectors ;

end
Function get_independent Vec<Clause> unsatisfied_clauses

independent_set← an empty vector ;
forall Clause c in unsatisfied_clauses do

if c does not contain any variable already in independent_set then
Add c’s variables to independent_set ;

end
end
Return independent_set ;

end
Function parallel KSAT ksat_inst

assignment← a random boolean vector with size equal to the number of variables ;
while loop forever do

unsatisfied_clauses← get_unsatisfied(ksat_inst, assignment) ;
if unsatisfied_clauses is empty then

Return assignment ;
end
independent_set← get_independent(unsatisfied_clauses) ;
resample(independent_set, assignment) ;

end
end

, Vol. 1, No. 1, Article . Publication date: December 2017.

Algorithmic Lovasz Local Lemma Performance :9

5 REFERENCES
REFERENCES
[1] Robin A. Moser and Gábor Tardos. 2009. A constructive proof of the general Lovasz Local Lemma. CoRR abs/0903.0544

(2009). arXiv:0903.0544 http://arxiv.org/abs/0903.0544
[2] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff: Engineering an

Efficient SAT Solver. In Proceedings of the 38th Annual Design Automation Conference (DAC ’01). ACM, New York, NY,
USA, 530–535. https://doi.org/10.1145/378239.379017

, Vol. 1, No. 1, Article . Publication date: December 2017.

http://arxiv.org/abs/0903.0544
http://arxiv.org/abs/0903.0544
https://doi.org/10.1145/378239.379017

	1 Summary
	2 Background
	2.1 K-SAT
	2.2 Lovasz Local Lemma

	3 Approach
	3.1 Goals
	3.2 Experimental Setup
	3.3 Why LLL
	3.4 Algorithm Design

	4 Results
	4.1 Performance
	4.2 Language Design / Usability

	5 References
	References

