
Emel: Deep Learning in One Line using Type Inference, Architecture Selection,
and Hyperparameter Tuning

BARAK OSHRI and NISHITH KHANDWALA

We present Emel, a new framework for training baseline supervised deep learning models. Emel is primarily a user interface for
training excellent deep learning models in one line of code. Our framework presents three important contributions: 1. Type Inference,
2. Architecture Selection, 3. Intelligent Training. The type inference module infers the type of user data. The model selection step
infers the task and architecture to solve it. The heuristic-guided training step incorporates expert insight in training the model. Emel

demonstrates that deep learning languages can have successful type inferencing, and that for supervised learning applications, program
inference can be achieved by inferring the model and automatically deducing the optimizations. We have implemented Emel for the
three input types images, sequences, and features. We hope Emel can point towards a paradigm where data preprocessing, architecture
choice, and model training is compiled into a single line in the programming pipeline.

Additional Key Words and Phrases: Deep Learning, Programming Abstractions, Type Inference

ACM Reference Format:
Barak Oshri and Nishith Khandwala. 2017. Emel: Deep Learning in One Line using Type Inference, Architecture Selection, and
Hyperparameter Tuning. 1, 1 (December 2017), 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Emel allows us to do machine learning in one line:

trained_model = Emel(X, Y)

Where X is the input data and Y is the label data, both in Numpy format.
Though the number of available deep learning frameworks for writing and training models continues to increase,

their ease of use has not yet peaked. The choices for programming on these exist on a spectrum from writing primitive

layers of the model architecture to loading sophisticated pretrained architectures.
Despite incredible advances on this spectrum, training machine learning models for simple, baseline usage remains

out of reach even on the end of this spectrum that reduces machine learning models to high-level interfaces. The Keras
framework, which is arguably the most versatile yet high-level deep learning framework, still includes many lines of
redundant code across applications that makes the barrier-to-usage for machine learning applications high.

These redundancies include but are not limited to the following:

(1) Formatting: reshaping data to standard input sizes
(2) Preprocessing: running standard preprocessing functions on known input types
(3) Architecture Selection: loading an architecture from a small and finite set of provenly successful deep learning

models
Authors’ address: Barak Oshri, boshri@stanford.edu; Nishith Khandwala, nishith@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Barak Oshri and Nishith Khandwala

(4) Evaluation: setting up standard evaluation metrics
(5) Hyperparameter Selection: iterating through a set of standard hyperparameters

We argue that each of these steps is programmable when the data type is known. For example, when the input type
is an image, we can say that

(1) Formatting: ensure that the number of channels appears as the last dimension of the image
(2) Preprocessing: normalize the input to zero mean and unit standard deviation
(3) Architecture Selection: load a ResNet model
(4) Evaluation: use accuracy if the dataset is imbalanced, F1 and ROC if the dataset is unbalanced
(5) Hyperparameter Selection: choose from a standard set of batch sizes and learning rates

The reason the input type alone dictates each of the choices in the model building is that there are a small number of
provenly successful deep learning architectures that can perform well on most daily tasks. Since these architectures
have standard input types, output types, hyperparameter choices, and loss functions, then the input type alone allows
us to infer each of the parts.

We argue that the Emel framework makes an important statement on the potential future of programming language
paradigms for machine learning usage. The current paradigm in these frameworks is that doing machine learning
involves manually interacting with an architecture specification step and then a training step. For example, in Tensorflow,
the first step of a program is to specify the model graph, and the second step is to build a session that executes the
graph. In PyTorch, the two layers are present but mixed together in an interactive session where the models are defined
and called at any point.

We wish to relinquish any programmatic control over these two steps to create a single architecture compiler that
does machine learning behind-the-scene.

2 TYPE INFERENCE

The linchpin to the Emel framework is type inference of arbitrary data input, whose raw data is inputted in numpy
format. Our framework assumes a set of finite types: image, sequence, and features. Though this set is limited, it is
chosen to have one-to-one correspondence with principal machine learning architectures. We anticipate that as the
scope and diversity of machine learning architectures increases in the long run that each architecture will become an
enabler for a new type, thereby increasing the semantic capabilities of our Emel framework.

2.1 Inference Assumptions

Emel has to balance a fundamental tension between the amount it infers and the amount it assumes. Inference is not
useful if it assumes that the input data comes in a specific format. Additionally, there are some attributes that are
impossible to infer from the data itself, such as whether an image is in RGB or BGR format.

The only controlling assumption we make is that the first dimension of any numpy input is the number of examples
in the data.

The approach we take to specifying what our input types are is with a list of rules. For Image types, we have a set of
necessary conditions that determine its type. If an input satisfies all of these conditions, it is likely an image.

For sequences, we have a set of sufficient conditions, any of which determine that the input is a sequence type.
These rules inform the complete set of conditions we use to specify the inference of a particular type. Whenever the

data doesn’t satisfy the necessary conditions in the Image or Sequence types, we automatically make it a Feature type.
Manuscript submitted to ACM



Emel: Deep Learning in One Line using Type Inference, Architecture Selection, and Hyperparameter Tuning 3

Any data can be trained in the Feature type. This allows us to circumvent the problem of not being able to write down
sufficient conditions for meeting these types.

We therefore program the type inference using the following backbone code:

if all([rule(X) for rule in image_rules]):

X.type = "Image"

else if any([rule(X) for rule in sequence_rules]):

X.type = "Sequence"

else:

X.type = "Features"

2.2 Image

We infer an input to be an image type if it satisfies all the following rules:

(1) The number of channels is a number that is smaller than the width or height.
(2) The number of channels appears as the last or the first feature dimension
(3) An image can be greyscale with no dimension on the number of channels
(4) The length and width channels have the same size
(5) The length and width channels are larger than 47 pixels (otherwise the input is too small to be an image)

If an input has the image type, we transpose the channel layers to make it the last dimension of the array. We
normalize our image to zero mean and unit standard deviation.

2.3 Sequence

We infer any input to be a sequence if it satisfies any of the following rules:

(1) The input is ASCII characters
(2) The input has variable size length

The main challenge with sequence inputs is to correctly tokenize the inputs. For example, the following are three
inputs that are tokenized differently:

(1) "This is a sentence" - String of words
(2) "Paris,London,Vienna" - Comma separated string of words
(3) "ACTAGTGC" - String of DNA characters
(4) 1, 5, 3, 9 - List of arbitrary classes

If the input is a list of numbers, then we treat those as the class numbers in an arbitrary class domain.
We then have a set of delimiters that we test for tokenization, including spacebar, comma, comma/spacebar, etc. The

delimiter that leads to the most number of split items is that one that is used. If none of these delimiters split the items
well, then we separate by character.

The items are then represented as indicies into the dictionary of items in the domain space. That is, we make a
dictionary mapping of all tokens seen in the dataset and map those tokens to integers starting from 0. We will use these
as indices to one-hot vectors to train the architecture for sequence types.

Manuscript submitted to ACM



4 Barak Oshri and Nishith Khandwala

2.4 Features

Any input that doesn’t fall under the above types is automatically mapped to a feature type. For this type, we reshape
any input to be single dimensional and then we normalize each column to zero mean and unit standard deviation.

2.5 Labels

We also infer the training label types. We limit our current Emel framework to train to a single scalar categorical or
continuous label types. In theory, we could train to a vector of categorical or continuous values.

3 ARCHITECTURE SELECTION

The architecture selection stage of the pipeline deterministically chooses the architecture based on the input and label
types. The input type determines which prediction architecture we use, and the label type determines which loss function
we use. We choose common deep learning architectures that are known to do well on these input types:

(1) Images -> ResNet
(2) Sequences -> LSTM
(3) Features -> Fully Connected Neural Network

The loss function choices based on the label types are:

(1) Continuous -> L2 loss
(2) Categorical -> Cross-entropy loss

Our architecture selection module combines the prediction architecture with the loss function layer to produce an
end-to-end trainable function. We also infer in here what size of these architectures to use. For example, with ResNet,
we have 18 layer, 35 layer, 50 layer, and 101 layer resnets available. Similar options are available for choosing larger and
smaller versions of the LSTM and fully connections networks. We choose this based on the size of the dataset and the
level of overfitting of the data. We start with smaller architectures and if the smaller architecture doesn’t overfit the
data, we use larger architectures.

4 HEURISTIC-GUIDED TRAINING

Training deep learning models is widely considered to be a craft - many key decisions for the model architecture and
optimization are backed by intuition and experience, and not by rigorous theorems. In Emel, we try to embed much of
this intuition into the training procedure. More concretely, machine learning practitioners usually train several models,
say n - each of which takes t hours to train - as a part of hyperparameter tuning. The model developers might spend an
additional x hours debugging their code to avoid unsuccessful training runs, overfitting etc. We hope to reduce this
nt + x hours of development time to t + ϵ hours (where ϵ < t ) by using the heuristic-guided training module.

First, Emel eliminates a large numbers of hyperparameters (model variables that can be tweaked for better perfor-
mance) by fixing model architectures to that of the current state-of-the-art models. Some examples of hyperparameters
we do not need to consider include dropout, batch normalization parameters and number of layers. The state-of-the-art
models we borrowed the architectures from are the result of months of tuning already and can, therefore, be assumed
to close to optimal.

The hyperparameters yet to be selected include batch size, number of training epochs, learning rate, learning rate
decay (if applicable) and the optimization algorithm. In the following paragraph, we describe the heuristics we coded to
Manuscript submitted to ACM



Emel: Deep Learning in One Line using Type Inference, Architecture Selection, and Hyperparameter Tuning 5

find a well-performing set of hyperparameters. Note that these heuristics represent the intuition and experience of the
authors and cannot be defended by anything but empirical evidence.

For all hyperparameters, we quit training early if the training and validation error do not decrease or if the training
loss has plateaued.

(1) Learning rate: For image models, we start off with a low learning rate of 1e − 4 and a decay rate of 5e − 3. The
image models are initialized with weights trained on the ImageNet dataset and thus can be simply fine-tuned on
the new dataset. For text models, we begin with a learning rate of 1e − 3 and a decay rate of 0.0.

(2) Batch size: We pick a batch size depending on the size of the dataset. If the dataset has more than 1,000 examples,
we try a batch size of 64. If there are more than 10,000 data points, we try 128 and if more than 100,000, we try
256. In case we are working with a rather small dataset of less than 1,000 examples, we pick a batch size of 32.
Currently we assume that the machines we are using can accommodate these batch sizes. In future work, we
will make provisions for GPU and memory specs.

(3) Number of epochs: The maximum number of epochs is 200. We quit training early and save the model if the
training loss has plateaued, the training accuracy has reached 100%.

We also experiment with several training tricks such as data augmentation, preprocessing steps (normalizing,
whitening and unit variance and mean) and dataset rebalancing.

Finally, we return the model with the best performing score on the validation dataset.

5 RESULTS

Emel is able to infer and train on multiple types of data, from images, to text, to arbitrary features.
The test cases we use for each type are:

(1) Image: We get to 91% accuracy on CIFAR-10.
(2) Sequence: We get to 81% accuracy on Twitter sentiment analysis
(3) Features: We get to 98% accuracy on MNIST.

Additionally, Emel achieves these accuracies in less than ten cycles of its hyperparameter updates, which is a
significant speedup from writing models to train on these datasets from scratche.

Emel runs into a few difficulties in training. Most of the updates to its hyperparameters are incremental from an
initial set of hyperparameters given to it in its first run. For some training runs, the trajectory from that initial set of
hyperparameters is not successful. We tell Emel to stop training if there is no improvement over many runs, but we are
lenient rather than strict in its stopping conditions. When the initial set of hyperaparameters is not good for the task,
Emel takes a long time to stop.

6 CONCLUSION AND FUTUREWORK

Emel is a case study in demonstrating that compilers can be written for compiling machine learning architectures
and training models automatically on any input data in untyped languages. In typed languages, the advantage is even
greater, as we can enforce in the programming language compiletime the data requirements for runing our architecture
selection and training modules. However, we show as our main contribution that in the data programming paradigm
we can implement type inferences to shift the focus of machine learning programming languages from model creation
to application usage.

Our framework doesn’t come with a few key shortcomings that would need to be addressed in further work on it:
Manuscript submitted to ACM



6 Barak Oshri and Nishith Khandwala

(1) Emel expects the entire dataset to be loaded as a single numpy array, assuming infinite memory to do so. Most
machines can’t load entire large datasets into a single array. We could solve this by loading the numpy arrays
as h5py files, or by allowing users to pass filename paths. However, working with filename paths essentially
bypasses the type inference stage, since from path extensions we can easily infer the data type.

(2) The tradeoff for extreme simplicity in Emel is a loss of some configurations that come with deep learning
frameworks, such as specifying when a user would like to train on multiple GPUs or otherwise. We can ask
Emel to infer what resources are available from the central worker and to parallelize if necessary across them
to maximize utility, but these are inferences that might go against the wishes of the user who doesn’t want to
utilize all the resources. Like many other programming languages, Emel eschews control for user-friendliness.

Nishith and Barak participated in equal share of the project.

7 REFERENCES

Keras Framework - https://keras.io/

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Type Inference
	2.1 Inference Assumptions
	2.2 Image
	2.3 Sequence
	2.4 Features
	2.5 Labels

	3 Architecture Selection
	4 Heuristic-Guided Training
	5 Results
	6 Conclusion and Future Work
	7 References

