
JIT Circuit Simulation with LLVM
Brennan Shacklett
Stanford University
bps@stanford.edu

Jennifer Tao
Stanford University

jenntao@stanford.edu

ABSTRACT
The project aimed to create a circuit simulator that produces JIT
compiled native code through LLVM’s APIs. A JIT based simulation
approach provides native simulation speed, while still allowing
native code to be recompiled to provide circuit debugging features
unavailable in statically compiled simulators. The result of the
project is a simulator that performs competitively against exist-
ing simulators in the field while providing a much larger array of
interactive debugging features.

1 BACKGROUND
Circuit and logic design has long been seen as a difficult and es-
oteric subject to enter into, largely because of poor tooling and
the slow iteration time of working on circuits. Recently, however,
groups such as the Stanford Agile Hardware Center [5], have begun
research on how to make developing hardware faster, easier, and
in general more like developing software.

When it comes to designing hardware with fast iteration times,
one of the key sticking points is the problem of Place and Route.
Hardware designs can be compiled to FPGAs or CGRAs—high per-
formance programmable hardware that quickly execute different
designs—but unfortunately, fitting large designs onto these chips
requires very slow Place and Route algorithms that often take hours
or days.

Although running designs on real hardware is typically prefer-
able for performance reasons, the slowness of Place and Route
means that software simulation is often the first step for debugging
a design. There are 2 broad categories of simulators: ones that in-
terpret a circuit description at runtime and execute similarly to a
scripting language (interpreters), and simulators that process a cir-
cuit description to produce code that, when compiled, will simulate
the circuit (static simulators). Unfortunately, interpreters typically
are not used outside of very small scale designs due to their very
poor performance.

The industry standard in static simulation is currently the Veri-
lator simulator [6], which reads in Verilog (the most widely used
hardware description language), and produces C++ which must
be compiled to produce a simulation program. Innovation in this
area was lacking for many years, possibly due to the complexity
of parsing and simulating Verilog, but the recent development of
CoreIR[2] and other new circuit intermediate representations (IR)
has caused an increase in development of new simulators.

This project focuses on simulating CoreIR-based circuits. CoreIR
already has both an interpreter and a static simulator like Verilator
that produces C++ code. However, the interpreter is quite slow,
and neither Verilator nor the CoreIR static simulator have easy-
to-use facilities to extract intermediate state or to set watchpoints
in a circuit. This is the motivation for a JIT-based simulator that
combines the performance of static simulators with the usefulness
of interpreters.

Figure 1: Simulation flow chart

This project relates to CS242’s themes of Performance (for obvi-
ous reasons), and Expressiveness, because the JIT simulator aims
to help circuit designers debug in a more natural and productive
way than existing solutions.

2 APPROACH
2.1 Overview
The defining aspects of our project’s simulator are its use of a
hierarchical strategy for simulation, and its use of a JIT backend to
lazily generate code. This section will first cover how a circuit is
represented and analyzed, before moving on to how LLVM is used
to generate and execute code. Figure 1 has a high-level overview of
the simulator’s operation and roughly corresponds to the layout
of this section. The entire project is written in C++, since both
CoreIR and LLVM’s native APIs are written in C++. The code for
the project can be found here [4], which is undoubtedly a more
complete description of the simulator’s approach than this report
can be.

2.2 Circuit Representation
One of the first design decisions in our project was to have a cus-
tom representation for the circuit, rather than building the project
around an existing IR. The primary reason behind this decision
was to reduce the complexity and special case handling needed in
the simulation analysis and code generation phases. In the authors’
experiences, most of the complexity in writing a simulator comes
from handling various edge cases within the IR, and when these
edge cases spread through the whole project, debugging quickly
becomes a nightmare.

In particular, CoreIR is a very general IR by design, so it can
be used in many ways that are simply not useful to the simulator.
This means the relationship between 2 pieces of a circuit may
be obscured through several layers of indirection which leads to

CS242 Final Report, December 2017, Stanford, California USA B. Shacklett, J. Tao

inefficiencies during code generation. Another pain point comes
from handling array types. In CoreIR, a single wire value can hold a
single bit of information, which is represented by the Bit class. This
means a circuit that operates on 32-bit integers instead operates
on Arrays of 32 Bits from CoreIR’s perspective. This becomes
particularly complicated when different bits in a given array refer
to separate values in a circuit. For example an array of 32 Bits could
have the upper 16 Bits connected to the output of one adder, and
the lower 16 Bits connected to the output of another adder. The
simplest way to solve this issue in a simulator is just to simulate
on a Bit-by-Bit or single wire level, but this is very detrimental
to performance since you cannot take advantage of the 64 bits in a
native machine word.

Therefore our project’s direct use of CoreIR is confined to load-
ing in the CoreIR representation, and constructing a new, much
simpler, and more restrictive representation from it. One of the key
limitations of the simulator’s representation is that it does not sup-
port nested types. CoreIR supports the concept of arrays of arrays,
but there is no natural relation from this concept to machine words,
so we use CoreIR’s flattentypes pass to flatten arrays of arrays
in the design into multiple single-level arrays. The simulator’s rep-
resentation is organized as follows:

At the top level is the Definition class. This corresponds to a
module (in CoreIR terms) or class (in Magma terms) in the origi-
nal circuit design. A definition can be instantiated to an Instance,
which represents an actual instance of the module that exists some-
where in the design. A Definition is either a primitive, meaning
it holds no instances of modules within it but has some exter-
nally defined behavior, or a list of Instances that are connected
together and define the Definition’s behavior. The semantics of
the behavior of various primitives is designed to match the cor-
responding CoreIR primitives. For example, CoreIR contains an
"add" primitive that adds 2 N-bit numbers together to produce
an N-bit result, a "reg" primitive that stores an N-bit value, etc.
Both Definitions and Instances contain an IFace (interface)
that defines the inputs and outputs for the attached Definition
or Instance. These components of an IFace are grouped into
Sources and Sinks. For Instances, the inputs are the Sinks and
the outputs are the Sources; for Definitions, the opposite is true
(while this may seem counterintuitive, remember that within the
context of a Definition, the Definition’s inputs are the origi-
nal Sources of all the values used by the Definition’s Instances,
and the Definition’s outputs are the Sinks that accept the values
generated by the Instances).

Sources and Sinks both store their bitwidth as well as a name
for debugging purposes. Sinks also hold a list of slices of Sources
that encodes the bits that drive a given Sink. For example, a 4-bit
Sink’s first 2 bits could be driven by the 4th and 5th bits of a 6-bit
input to a Definition, and the last 2 bits could be driven by the
2nd and 3rd bits of an Instance’s 4-bit output. As an optimization,
when connecting a Sink to a list of Sources, the representation
groups together adjacent bits. For example, Magma sometimes has
a tendency to connect values Bit by Bit, when in reality a Sink
could be a direct copy of a Source, instead of N 1 bit slices of the
Source. This optimization improves the performance and clarity
of the generated code.

Memory management in the representation is currently a bit
fragile; currently, Definitions "own" all the memory within them,
and there are numerous pointers shared around to link together
connected values and instances. The only real issue with this ap-
proach is the danger of pointer invalidation if and when values
are accidentally moved due to containers being extended. Possible
future approaches include a Context object that owns all allocated
data and then hands out unique IDs that can be used to retrieve
values (or perhaps raw pointers for performance).

2.3 Simulation Analysis
After the circuit representation is constructed from CoreIR’s repre-
sentation, the simulator analyzes the circuit and stores information
that is necessary for code generation. Before those details are pre-
sented, we will first explore the difference between hierarchical
and the traditional "flat" simulation strategies. Note that in all the
simulation analysis discussion, it is assumed that a circuit only has
1 clock. This is not a realistic assumption for a production-grade
simulator, but currently no existing CoreIR-based simulator handles
more than 1 clock and the semantics of multiple clocks are poorly
defined in CoreIR itself, since no design exists for CoreIR that uses
more than one clock. The design of this simulator does not preclude
eventually supporting multiple clocks in the future, but this feature
is out of the scope of our project.

In a traditional simulator (static or interpreter-based), all the
hierarchy in a circuit design is removed by flattening the entire
circuit into a single module, which only contains instances of prim-
itives. This process is akin to inlining all of a program’s code into a
single function. The reasoning behind this approach is primarily
simplicity: the behavior of a given primitive in the flattened module
is much easier to reason about than the behavior of an instance of a
module that may include other modules within it, particularly when
modules contain state within them. Any given flattened circuit can
be reasoned about as a collection of state, combined with some set
of combinational logic that performs a function on the state. Each
time the clock is toggled, the collection of state is updated and a
new output is computed by the combinational logic. Simulators
that use flattened designs typically separate out the state and the
combinational logic, and then order the combinational logic so it
can be correctly and efficiently executed in serial on a CPU.

Conversely, this simulator uses a hierarchical strategy where,
instead of flattening, each Definition is analyzed to produce a
compute_output and an update_state function that computes
the output based on the current state and inputs, and updates the
state based on the current inputs, respectively (credits to Ross
Daly for outlining the idea of compute output and update state at
the beginning of the quarter). These functions are composed from
one another: this means the top-level definition’s update_state
function will call the update_state functions of every instance
within itself, and so on. For example, consider the circuit in Figure 3.
The update_state function for this simple circuit will call the
update_state function of the Counter in Figure 2, which will call
the update_state function of the Register, which is a primitive
(notice that the Add primitives do not have update_state called
on them because they hold no state).

JIT Circuit Simulation with LLVM CS242 Final Report, December 2017, Stanford, California USA

Figure 2: The Magma Counter Circuit.

Figure 3: A Simple Circuit.

Now that the concepts of compute_output and update_state
have been defined, the simulator’s analysis is left with the problem
of how to order the execution of instances in compute_output and
update_state so that no instance is executed before any of the
instances it depends on. For example, the circuit in Figure 3 relies
on the Counter’s output before the Adder’s compute_output func-
tion can be executed. This example circuit’s Counter also brings
up a problem with the original definition of compute_output and
update_state. At the start of the project, compute_output and
update_state were defined to expect all of their inputs to be avail-
able at the time of their execution. Unfortunately, closer examina-
tion of the Counter in Figure 2 shows this is impossible: calling
compute_output on the Register would require compute_output
to be called on the Adder first, but the Adder’s output depends
on the Register’s output. The solution to this problem is fairly ob-
vious: the semantics of a Register indicate that its output is not
dependent on its input, because the input is only used to update
the internal state on the clock’s rising edge. Therefore the Regis-
ter’s compute_output does not require the Register’s input to be
available, and the correct order is for the Register to be executed
before the Adder. This means each definition needs to have 2 ad-
ditional pieces of information in addition to compute_output and

update_state: the subset (not necessarily proper) of the inputs
required for compute_output and update_state respectively.

The simulator computes all this information as follows (note that
Definitions are analyzed in a bottom-up order, meaning when an-
alyzing a given Definition, the Definitions of all its Instances
have already been analyzed): first, the simulator gathers all stateful
instances and places them in a list so they can be called by the
update_state function; then, for each of these stateful instances,
the simulator does a depth-first traversal of all the instances whose
outputs the stateful instance depends on for updating state (this
is where the list of inputs required for update_state is used). For
example, the Counter circuit’s only stateful instance is the Register,
and the Register’s output depends on the Adder’s output, which de-
pends on the Register’s output, so (somewhat confusingly) the Reg-
ister’s dependencies for updating its state are itself and the Adders’
output. These instances are then gathered into a list of "stateful
dependencies", and are topologically sorted, so that no instance
will ever be called before its inputs are ready. The update_state
function can then operate by calling compute_output on each of
the stateful dependencies, followed by calling update_state for
each stateful instance. Additionally, if any of the stateful instances
trace back to one of the Definition’s inputs, that input is marked
as required for update_state.

The compute_output information is calculated in a very similar
way: instead of starting with the stateful instances and tracing back,
the Definition’s sinks are traced back with a depth-first traver-
sal and every instance is added to a list of "output dependencies,"
which are then topologically sorted. Any inputs of the definition
that are traced to from the outputs are marked as required for
compute_output.

This somewhat complex process raises a question: why is hierar-
chical simulation useful? There are several reasons. First, breaking
the simulation up into multiple functions is useful for the recompi-
lation required by debugging, since much smaller parts of the code
would then need to be recompiled. Second, retaining the hierarchy
of the original design is useful for debugging, since a potentially
lossy and very complicated mapping from components in the origi-
nal design to components in the flattened design would otherwise
be required to find intermediate values. Additionally, although all
these function calls may at first appear to have a large overhead
compared to a flattened approach, the core simulation functions can
potentially be inlined, leaving only debugging functions to retain
the hierarchy, and drawing upon the best of both worlds.

2.4 Compiler Stub Generation
After circuit analysis is finished, instead of generating the IR up
front, LLVM’s callback manager and indirect stubs manager are
used to create stubs for each compute_output, update_state and
debug function. These stubs pause execution when called, jump
into a compile callback that generates IR, and then update the stub
to point to the machine code after the IR has been compiled. This
introduces some slight overhead since any function call comes with
the additional level of indirection of these stubs, but the additional
overhead could be fixed by using LLVM’s patch sites feature. This
would allow any call to the stub to be updated with a direct call

CS242 Final Report, December 2017, Stanford, California USA B. Shacklett, J. Tao

after the stub has been compiled; however, this feature is currently
experimental in LLVM, so it was passed over.

The motivation for lazily generating code and IR like this is to
avoid paying a cost for features of the simulator that are not used.
For example, a user of the simulator only interested in the state of
the circuit can simply repeatedly call update_state and examine
the saved state, and if users do not require debugging features then
no time will be spent compiling the debug functions until they are
called.

2.5 LLVM IR Generation
Compared to simulation analysis, generating the actual IR is rela-
tively straightforward. compute_output is generated for each defi-
nition by simply iterating through the sorted list of output depen-
dencies calculated during analysis, and calling the compute_output
function for each instance, unless it is a primitive. If a given in-
stance is a primitive, then code generation calls a predefined lambda
function which outputs the IR for a given primitive, for example,
this is the IR generation code for the compute_output "function"
of CoreIR’s mux primitive:

[] (au to &env , au to &args , au to &i n s t)
{

l l vm : : Value ∗ l h s = a rg s [0] ;
l l vm : : Value ∗ rhs = a rg s [1] ;
l l vm : : Value ∗ s e l = a rg s [2] ;

l l vm : : Value ∗ i f _ c ond =
env . g e t I R B u i l d e r () . CreateICmpEQ (s e l ,

l l vm : : Con s t an t I n t : :
g e t (env . g e tCon t ex t () , l l vm : : APInt (1 , 0)) ,

" i f c o nd ") ;

l l vm : : Value ∗ r e s u l t =
env . g e t I R B u i l d e r () . C r e a t e S e l e c t (i f _ cond , lhs , rhs , "
r e s u l t ") ;

r e t u r n s t d : : v e c to r < l lvm : : Value ∗ > { r e s u l t } ;
}

Notice that this does not actually generate a function that per-
forms the compute_output operation; it simply inserts instructions
directly into the current Definition’s basic block. This was done
to improve performance, since a fully flattened design will be fully
inlined already with this approach, and also to improve usability.
One goal was to make sure adding primitives would be as quick and
easy as possible, so we wanted someone implementing primitives to
write as little boilerplate as possible. If a primitive does need to call
a function, it can still do so, and there is a separate infrastructure
for the primitive to define an LLVM module with helper functions
it can call out to.

After the compute_output IR has been generated for each in-
stance within a Definition, the final outputs of the definition are
packed together into an LLVM struct and returned. This is to sup-
port Definitions with multiple outputs, since LLVM functions
cannot return multiple values directly. There seems to be very little
overhead from packing values into structs: based on examination
of the generated assembly, LLVM often removes the struct entirely
and just returns multiple results in multiple registers.

The update_state function is generated in a very similar man-
ner, except instead of iterating through the list of output dependen-
cies, the list of stateful dependencies is used, and instead of packing
the outputs in a struct, the update_state IR for each instance is
produced at the end of the function.

One subtle aspect of code generation is how the storage of state
is handled. The number of bytes of state required for each definition
is recursively calculated based on their component instances, which
ultimately determines the number of bytes of state required for the
top-level definition (and therefore the whole circuit). This is then
allocated in one buffer, which is passed into the compute_output
and update_state functions. Each instance in a definition is given
an offset relative to the start of the definition. For example, in a
Definition that contained two 4-byte registers, one register would
be given an offset of 0 and one would be given an offset of 4. There-
fore, before calling compute_output or update_state, the current
state pointer would be incremented by the instance’s offset value,
which ensures that no instance overwrites or reads the state of
another instance. This approach guarantees that the state can be
passed through the hierarchy as a single pointer to ensure mini-
mal overhead. In a totally flattened design, each instance could be
assigned a fixed address to store state at, which would likely be
somewhat more efficient. However, the overhead of incrementing
the pointer has been low enough thus far to not require explor-
ing that optimization, especially since it only works on flattened
circuits.

In order to simplify generation of IR, each LLVM function is
wrapped in a FunctionEnvironment class that stores the currently
declared variables and functions, which prevents duplicate declara-
tions of external functions in a given module and allows values to
be easily accessed. The FunctionEnvironment stores a map from
Source to llvm::Value, so the values that a given Sink depends
on can quickly be retrieved and passed as arguments to a given
instance.

2.6 LLVM JIT Execution
The actual JIT compilation and execution uses LLVM’s ORC APIs,
based on the tutorial found here [3]. When ready to be compiled,
LLVM IR is passed to a transform layer that performs optimizations
(currently just the default set of -O2 optimizations). This optimized
IR is then passed to the SimpleCompiler layer that generates native
machine code, which then passes the IR to the runtime linking layer.
This layer uses a dynamic symbol resolver to first look inside the
JIT’s compiled code for a symbol, and then calls an external lambda
that simply looks through the host processes’ symbols. This allows
JITed code to call back to precompiled functions in the host process,
for debugging or perhaps profiling purposes.

2.7 JIT Debug Support
Previous sections briefly alluded to generating "debug functions"
alongside update_state and compute_output. The debug version
of update_state is currently called state_deps, and performs
the same compute_output calls on the stateful dependencies as
update_state, but never actually calls update_state; so it essen-
tially computes all the outputs update_state would have, without
actually changing the state. Additionally, the state_deps function

JIT Circuit Simulation with LLVM CS242 Final Report, December 2017, Stanford, California USA

passes an instance id through the call stack, which tracks the cur-
rent instance of the definition that is currently being executed. This
is important since it allows the debugging code to differentiate be-
tween different calls to the same definition’s state_deps function.
The debug version of compute_output is called output_deps and
is identical except for the introduction of the instance id parameter
like in state_deps.

Neither of these functions is particularly useful unmodified, but
together they allow access to every single intermediate value in the
circuit (this is why the state_deps function is necessary, because
otherwise it would be impossible to access intermediate values
from a definition’s state dependencies without updating state at the
same time). After the IR for these functions is initially generated
through the stub callbacks, the IR is saved for the duration of sim-
ulation to allow them to be repeatedly modified without needing
to regenerate the initial IR over and over. To support this feature,
an interface to remove code from the JIT was added, which simply
rewrites the stub from pointing to the now-removed compiled code
to instead point to a new compile callback. Additionally, before
these functions are modified, the modules are cloned to preserve
the original copy. The performance impact of this clone operation
versus simply regenerating the whole function from scratch each
time is likely worth investigating in the future.

The JIT frontend provides a DebugInfo interface to these func-
tions, which allows clients to request specific intermediate values
be extracted from a given instance’s state_deps or output_deps
function. After the DebugInfo is updated, the debug functions are
regenerated to extract the given intermediate value with the given
instance ID. Here is an example of a modified output_deps func-
tion for the circuit in Figure 3. This code extracts the output of the
counter before the adder has incremented it by the input value:
define %global_simple_output_type .1

@global_simple_output_deps(i4 %self.I, i8*
%state_ptr , i64 %inst_offset) {

entry:
%0 = add i64 %inst_offset , 0
%inst0_output = call %global_Counter4_output_type

@global_Counter4_output_deps(i8* %state_ptr , i64 %0)
%inst0_COUT = extractvalue %global_Counter4_output_type

%inst0_output , 0
%inst0_O = extractvalue %global_Counter4_output_type

%inst0_output , 1
%1 = add i64 %inst_offset , 1
%inst1_output = call %global_Add4_output_type

@global_Add4_output_deps(i4 %inst0_O , i4 %self.I,
i64 %1)

%inst1_O = extractvalue %global_Add4_output_type
%inst1_output , 0

br label %debug_block

return: ; preds
= %inst_match , %debug_block

%2 = insertvalue %global_simple_output_type .1 undef , i1
%inst0_COUT , 0

%3 = insertvalue %global_simple_output_type .1 %2, i4
%inst1_O , 1

ret %global_simple_output_type .1 %3

debug_block: ; preds
= %entry

%4 = icmp eq i64 %inst_offset , 0
br i1 %4, label %inst_match , label %return

inst_match: ; preds
= %debug_block

store i4 %inst0_O , i4* inttoptr (i64 33075376 to i4*)

br label %return
}

The debug passes operate by rewriting all jumps to the final return
block of the function to instead jump to the debug block, which
then compares the current instance id to the desired instance id;
if they are equal,the debug block stores the given value in a fixed
memory location determined by the client. This approach allows
arbitrarily many of these debug blocks to be chained together, with
the only overhead being the instance id comparison and a single
store. The debug passes also support watchpoints with this strategy
by simply adding an additional conditional to the debug block to
only store a value if a condition is true.

Overall these debug functions allow intermediate state to be ex-
tracted without modifying or slowing down the core update_state
and compute_output functions. For simply examining intermedi-
ate state, there is essentially no downside to this approach; however
there is considerable overhead introduced for watchpoints, since
both debug functions need to be called each time after the state is
updated. Ideally, these changes could be integrated into a debug
version of update_state that checked watchpoints and updated
state, but there was not enough time to test that approach.

3 RESULTS
The utility of the JIT simulator was evaluated based on the quality
of the generated IR, the performance of the generated code, and
most importantly, the JIT’s ability to facilitate debugging.

3.1 Generated LLVM IR
One of the goals of our project was to generate high quality LLVM
IR to facilitate debugging. This means the IR should ideally be
human-readable, so that a circuit designer can input their design
into the JIT and immediately see a view of the straight-line code the
simulator generates. Ideally, this would allow circuit designers to
quickly find ambiguities and errors in their design exposed by the
simulator’s analysis of the circuit. The following is the generated IR
for the compute_output function of a linebuffer memory included
from CoreIR’s standard library:
define %commonlib_LinebufferMem_output_type

@commonlib_LinebufferMem_compute_output(i8*
%state_ptr , i64 %inst_offset) {

entry:
%0 = getelementptr inbounds i8, i8* %state_ptr , i64 20
%1 = add i64 %inst_offset , 3
%raddr_output = call %mantle_reg_output_type

@mantle_reg_compute_output(i8* %0, i64 %1)
%raddr_out = extractvalue %mantle_reg_output_type

%raddr_output , 0
%valid_cond = icmp ult i4 %raddr_out , 1
br i1 %valid_cond , label %then , label %else

then: ; preds = %entry
%2 = bitcast i8* %state_ptr to i16*
%3 = zext i4 %raddr_out to i64
%addr = getelementptr inbounds i16 , i16* %2, i64 %3
%rdata = load i16 , i16* %addr
br label %merge

else: ; preds = %entry
br label %merge

merge: ; preds = %else , %then
%mem_rdata = phi i16 [%rdata , %then], [0, %else]
%4 = getelementptr inbounds i8, i8* %state_ptr , i64 21

CS242 Final Report, December 2017, Stanford, California USA B. Shacklett, J. Tao

%5 = add i64 %inst_offset , 7
%waddr_output = call %mantle_reg_output_type

@mantle_reg_compute_output(i8* %4, i64 %5)
%waddr_out = extractvalue %mantle_reg_output_type

%waddr_output , 0
%veq_out = icmp ne i4 %raddr_out , %waddr_out
br label %return

return: ; preds = %merge
%6 = insertvalue %commonlib_LinebufferMem_output_type

undef , i16 %mem_rdata , 0
%7 = insertvalue %commonlib_LinebufferMem_output_type

%6, i1 %veq_out , 1
ret %commonlib_LinebufferMem_output_type %7

}

This example highlights both the strengths and weaknesses of
our current IR generation. Since LLVM allows naming of registers,
every output of an instance is named with the convention "instance
name_port name", such as "waddr_out" or "veq_out." The call in-
structions also show the hierarchy of the design at play, because
they make it very clear when an instance is being evaluated. Un-
fortunately, there is also a good deal of baggage associated with
function calls, namely the "extractvalue" and "insertvalue," instruc-
tions that are necessary to pack and unpack multiple return values
from functions. Currently these clutter the overall flow of the IR
significantly, so ideally this could be better hidden without an im-
pact on performance. Another minor weakness of LLVM IR is that
a given value in SSA form can only have 1 name, which means it
is not possible to name instance inputs (since that would involve
renaming the output). Ultimately, the current LLVM IR produces a
reasonably useful view of the execution of a given part of the design,
but some clutter and limitations of the current calling conventions
mean there is still more work to be done here.

3.2 Performance
The JIT simulator was evaluated on 3main performancemetrics: the
startup time of the JIT, the performance-per-cycle of the JIT after
all code has been compiled, and the memory overhead introduced
by the JIT. Most of these results are based on running various
simulators on the CoreIR Harris circuit, which implements a version
of the Harris corner detection algorithm [1]. This is the largest
currently available real-world circuit in CoreIR that the authors
are aware of, so while larger and slower circuits would have been
better for some of the performance analysis, this was not possible
due to the relative immaturity of CoreIR. All the performance tests
were conducted on Brennan’s desktop running Gentoo Linux with
a Intel 5820k processor.

3.2.1 Startup Time. While much of the initial design of the
JIT simulator revolved around making sure that code generation
was as fast as possible to reduce startup time, we found that in
real-world testing on the circuits currently available in CoreIR,
startup time was fast enough to never be a practical issue that
impeded usage of the JIT. In our testing on the Harris circuit, startup
time with optimizations enabled on the project and in LLVM was
measured in the 0.25 - 0.28s range over 100,000 tests. This includes
the time to load the circuit from CoreIR, perform graph analysis
on the circuit, and generate all native IR and machine code up-
front before execution. The CoreIR interpreter has a much faster
startup time in the sub 0.1s range, since it only needs to perform

Table 1: Comparison of Performance Per Cycle

Simulator ms per cycle

JIT Simulator 0.00007331 ms
CoreIR Simulator 0.00006872 ms
CoreIR Interpreter 2.124 ms

Verilator 0.00006324 ms

graph analysis of the circuit. Both of these times are low enough to
be totally insignificant for debugging or normal usage, especially
since the JIT can dynamically change the produced code at runtime
rather than requiring repeated restarts like a traditional simulator
would. In comparison, Verilator takes on average 10 seconds to
produce C++ for the Harris test, and then additional time is needed
to compile and link that file (which is dependent on compiler choice
and optimization levels).

3.2.2 Performance Per Cycle. Performance per cycle was com-
pared between the JIT Simulator, the CoreIR Simulator, the CoreIR
Interpreter, and Verilator. The tests were conducted by running
the Harris circuit over 1 million cycles on each simulator and com-
puting the average ms per cycle. The results are shown in Table 1.

The main takeaway from these results is that on the Harris
circuit, the JIT simulator is within less than 10 percent of the speed
of Verilator and the CoreIR Simulator, and the interpreter is several
orders of magnitude slower than all the other options. One side
note is that the CoreIR interpreter’s extremely poor performance is
not necessarily indicative of the poor performance of all interpreted
strategies. In particular, the current CoreIR interpreter performs
particularly poorly on the large amount of arithmetic computations
in the Harris circuit because it performs all math on arbitrary width
bit vectors, which currently are not particularly well optimized.
Regardless, from a performance perspective, these results show
that the JIT Simulator is able to provide all the key features of the
interpreter for debugging with a fairly minimal impact to overall
performance when compared to the traditional approaches. In fact,
the native machine code produced by running Clang on the C++
file produced by Verilator is very similar to the native machine code
produced by the JIT.

The main reason for the JIT’s performance penalty compared to
the statically compiled simulators is the interface used to call into
the JITed code. In order to allow arbitrarily many arbitrary-width
inputs to be passed into the JITed code, a wrapper is generated
by the JIT that accepts a struct and then loads inputs from that
struct into registers that are then passed into the actual simulation
code. According to performance tests done in Valgrind, this extra
step of needing to load the inputs from a struct rather than pass-
ing the inputs directly as can be done in the generated C++ code
has a nontrivial performance impact. One possible solution to this
problem is to allow getting a raw pointer to the simulation code
that can be called directly by a user of the JIT if they know the
input and outputs of the circuit they are working on beforehand.
Unfortunately, this would result in a loss of flexibility since the user
would need to recompile their frontend whenever they changed
the interface to the top level circuit.

JIT Circuit Simulation with LLVM CS242 Final Report, December 2017, Stanford, California USA

Ultimately, it seems plausible that the JIT could feasibly produce
faster machine code than existing C++ based simulators, since it is
capable of generating code at a lower level. In particular, LLVM’s
support for arbitrary integer widths could be leveraged in optimiza-
tion passes that converted those large integers to SIMD operations
where possible, with much less analysis than would be required on
the C++ generated by Verilator or the CoreIR simulator.

3.2.3 Memory Overhead. The memory overhead of the JIT simu-
lator is primarily important when compared with the CoreIR circuit
interpreter. Much like the JIT, the CoreIR Interpreter allows any
intermediate value in the circuit to be examined and watched for
changes. However, it achieves this by simply saving all intermediate
state in the entire circuit during the evaluation of each cycle. This
works fine for small- to medium-sized circuits; however, it quickly
breaks down for large circuits with thousands or millions of inter-
mediate values. The JIT works around this problem as discussed
earlier, by recompiling circuits to only save values of interest. Unfor-
tunately, the JIT is not always strictly better than the interpreter in
terms of memory usage, due to the overhead introduced by storing
LLVM IR and native machine code.

The memory overhead was evaluated in several different ways:
first the memory usage of the interpreter and the JIT simulator
were compared before execution of the circuit. This was designed
to measure the overhead of the circuit representations, without
regard for the overhead of generated code by the JIT. We found
that for most circuits, the JIT’s circuit representation had a much
lower overhead than the CoreIR interpreter’s circuit representa-
tion, usually on the order of 25 percent. For example, the CoreIR
interpreter used 4MB of ram to load in the Harris circuit while
the JIT simulator used 1MB. This was to be expected, because the
JIT simulator loads in the CoreIR representation, translates it to
its own much simpler representation, and then frees the CoreIR
representation before simulation begins.

The previous test was repeated after additionally having the JIT
simulator generate IR and native machine code. As discussed in
the Approach section, the JIT retains the IR version of the debug
functions, so the overhead of this step is significant. This placed the
JIT simulator at 25MB of memory used on the Harris example while
the CoreIR interpreter of course remained at 4MB. As an additional
test, we decided to not include the size of debug functions, which
brought the JIT’s memory usage down to around 3MB, showing the
cost of saving LLVM IR was much more significant than expected.
Even so, this is a relatively minor issue with the JIT, since the faster
debugging provided by saving IR outweighs the fixed memory over-
head in many applications. Additionally, a user of the JIT only pays
the memory cost for the debugging features once those features are
actually used, so if the user is only executing the circuit normally,
the debug IR is never generated.

Finally, the memory usage after 1000 cycles of execution on the
Harris circuit was compared (note that for this test the interpreter’s
rewind feature was disabled since it currently saves the state af-
ter every cycle). The JIT simulator used approximately 50MB of
memory, due to additional space needed to store the state for the
circuit, which is not allocated until execution. The interpreter’s
memory usage increased substantially up to 125MB, because every

intermediate value needed to be saved as a dynamic width bit vec-
tor, which contains significant overhead. As an extension of this
test, we expanded the Harris circuit to operate on 32-bit values
instead of 16-bit values, and found that the JIT simulator actually
reduced its memory usage slightly down to about 45 MBs (due to
fewer truncation instructions needed in the generated code), and
the interpreter’s memory requirements more than doubled up to
approximately 275 MB, since the size of all the intermediate states
doubled.

Of course, strong conclusions cannot be drawn from these results
without a much wider set of test circuits and machine configura-
tions, as well as more precise measurements of memory usage.
However, these results still seem to indicate that the JIT simulator
has a significantly more scalable strategy than the interpreter in
terms of memory usage.

3.3 Debugging
In order to show that the performance of the JIT simulator is ben-
eficial, and even necessary, to support debugging a wide class of
circuits, we created an example circuit in Magma, as shown below:

de f De f i n eBWCl a s s i f i e r (width , h e i gh t) :
c l a s s BWCl a s s i f i e r (C i r c u i t) :

name = ' example '
IO = ["R " , In (B i t s (8)) , "G" , In (B i t s (8)) , " B " , In (
B i t s (8)) , " F " , Out (B i t) , "O" , Out (B i t) , "CLK" , In (
Clock)]
@classmethod
de f d e f i n i t i o n (c i r c u i t) :

c o u n t e r b i t s = i n t (l og2 (width ∗ h e i gh t))
conv = ToGraySca le ()
wire (c i r c u i t . R , conv . R)
wire (c i r c u i t . G , conv .G)
wire (c i r c u i t . B , conv . B)
compare = ULE (8)

compare r e t u r n s 1 i f the g r a y s c a l e va l u e i s below
128 (in o th e r words i t i s more b l a c k)
wire (conv .O , compare . I 0)
wire (a r r ay (1 2 8 , 8) , compare . I 1)
n = Not ()
wire (compare . O , n . i n t e r f a c e . p o r t s [' i n '])

wh i t e_ coun t e r = Counter (c o un t e r b i t s , has_ce=True)
b l a c k _ c oun t e r = Counter (c o un t e r b i t s , has_ce=True)

wire (n . out , wh i t e_ coun t e r . CE)
wire (compare . O , b l a c k _ c oun t e r . CE)

b l a ckvwh i t e = ULE (c o u n t e r b i t s)
wire (wh i t e_ coun t e r . O , b l a ckvwh i t e . I 0)
wire (b l a c k _ c oun t e r . O , b l a ckvwh i t e . I 1)

C i r c u i t Outputs 1 i f more whi te than b l a c k
wire (b l a ckvwh i t e . O , c i r c u i t .O)

t o t a l = Add (c o u n t e r b i t s)
wire (wh i t e_ coun t e r . O , t o t a l . I 0)
wire (b l a c k _ c oun t e r . O , t o t a l . I 1)
t o t a l cmp = EQ(c o u n t e r b i t s)
wire (a r r ay (width ∗ he igh t , c o u n t e r b i t s) , t o t a l cmp . I 0)
wire (t o t a l . O , t o t a l cmp . I 1)
wire (to ta l cmp , c i r c u i t . F)

r e t u r n BWCl a s s i f i e r

CS242 Final Report, December 2017, Stanford, California USA B. Shacklett, J. Tao

Figure 4: A diagram of the Black/White Classifier Circuit.

A graphical depiction of the circuit is also provided in Figure 4.
During each cycle, this circuit takes the 8-bit RBG values of a pixel
in an image, and converts this to a single 8-bit grayscale value (the
code for ToGrayScale is omitted—it simply performs fixed point
arithmetic to multiply the R, G and B values by some fraction and
combines the result). After the grayscale value has been computed,
it is compared against the midpoint value 128 to determine if the
given pixel is more white or black, at which point the corresponding
counter is enabled and the counter for black or white will increase
by one. The running totals of each counter are continuously com-
pared, and when every pixel has been counted, the F or "finished"
signal becomes true, and the consumer of this circuit can use the
value, perhaps as a feature in some larger machine learning project.

Unfortunately, the magma code for this circuit has a subtle but
very significant error. The circuit itself is parameterized by the
width and height of the input image, so the circuit knows how
many bits to allocate to the counter to be able to count all the way
up to the total resolution of the image (in case the entire image is
determined to be black or white). However, the programmer for
this circuit forgot to use the ceiling of the log base 2 rather than
just the log base 2, so for any image whose total number of pixels
is not a power of 2, this circuit will ignore the end of the image. As

an aside, it seems plausible that magma should have warned the
programmer when trying to fit the constant number of pixels into
too small of an array, but unfortunately that is currently not the
case and the above circuit will compile without error or warning.

Imagine a scenario where a designer is creating a circuit that
processes 1920x1080 images. 1920 · 1080 is not a multiple of 2, so
the error will be manifested in the designer’s circuit. Let’s assume
that the designer notices something is wrong with the black white
classifier and begins to debug. Assuming the designer did not have
access to the JIT simulator, his debugging process would likely go
as follows: he could attempt to run the circuit under the CoreIR
Interpreter, and set a watchpoint for when the F signal of the black
/ white classifier turned to 1. When this watchpoint was triggered,
the interpreter would allow him to examine the internal state of
the classifier when it believes it has finished processing the circuit,
and he could likely see that the sum of the counters is much less
than the total size of the image, and that the 1920 · 1080 constant
had been truncated. Unfortunately in order for this watchpoint to
trigger, the interpreter would have to advance through approxi-
mately 1 million cycles, which on this circuit, even with a very
simplified implementation of ToGrayScale takes around 40 minutes.
Assuming the designer gave up on using the interpreter on his de-
sign due to its slow performance, he has 2 approaches: he could try
reducing the size of the image, so the interpreter could operate on
a smaller example. Unfortunately this could require a large number
of changes across the design, especially in the circuit that loads
the image and passes it to the classifier. Alternatively the designer
could opt to build debugging assertions into his design using Veri-
lator’s debugging features; however, each new assertion requires
recompiling the circuit, and introducing code into his design that
is Verilator specific.

The JIT simulator makes this problemmuch simpler to solve. The
designer can set a watchpoint on the F signal of the classifier, and
the JIT will recompile the appropriate function to write a boolean
out to some external address when the F signal becomes true. Each
cycle the JIT just checks if this address contains true, and if so
the simulator stops cycling an notifies the designer. At this point
the designer can query any intermediate variables and the JIT will
automatically recompile the correct output_deps function to extract
the desired values. All these recompilations happen in less than
half a second, so the designer is able to debug the circuit in a
very interactive manner, allowing a similar experience to software
debugging through GDB.

3.4 Conclusions
These results show that the JIT Simulator is able to provide debug-
ging features that can be used to find and fix issues in real circuits,
without needing to make significant concessions for usability or
performance. In particular, the JIT simulator is able to provide all
the features an interpreter based simulator would, but without the
traditional performance cost. Additionally, the JIT simulator is ca-
pable of better interoperability with the existing statically compiled
simulators, since ultimately they all produce machine code that
uses the C calling conventions. The flexibility and performance of
the JIT simulator will hopefully make it a useful tool in the future
of agile hardware development.

JIT Circuit Simulation with LLVM CS242 Final Report, December 2017, Stanford, California USA

ACKNOWLEDGMENTS
The authors would like to acknowledge Ross Daly and Leonard
Truong for their work on the CoreIR circuit representation, Dillon
Huff for his work on the CoreIR interpreter, and Professor Pat
Hanrahan for his work on Magma and CoreIR.

WORK BY PROJECT MEMBERS
Equal work was performed by both project members.

REFERENCES
[1] CoreIR 2017. CoreIR example programs. (2017). Retrieved Dec 14, 2017 from

https://github.com/StanfordAHA/CGRAMapper/tree/master/examples
[2] CoreIR 2017. CoreIR source code. (2017). Retrieved Dec 14, 2017 from https:

//github.com/rdaly525/coreir
[3] JIT 2017. Building a JIT in LLVM. (2017). Retrieved Dec 14, 2017 from https:

//llvm.org/docs/tutorial/BuildingAJIT1.html
[4] JITSim 2017. JIT Circuit Simulation with LLVM. (2017). Retrieved Dec 14, 2017

from https://github.com/shacklettbp/jitsim
[5] Stanford AHA 2017. ISTC/AHA! Intel Science and Technology Center for Agile

Hardware. (2017). Retrieved Dec 14, 2017 from https://aha.stanford.edu/
[6] Verilator 2017. Introduction to Verilator. (2017). Retrieved Dec 14, 2017 from

https://www.veripool.org/wiki/verilator

https://github.com/StanfordAHA/CGRAMapper/tree/master/examples
https://github.com/rdaly525/coreir
https://github.com/rdaly525/coreir
https://llvm.org/docs/tutorial/BuildingAJIT1.html
https://llvm.org/docs/tutorial/BuildingAJIT1.html
https://github.com/shacklettbp/jitsim
https://aha.stanford.edu/
https://www.veripool.org/wiki/verilator

	Abstract
	1 Background
	2 Approach
	2.1 Overview
	2.2 Circuit Representation
	2.3 Simulation Analysis
	2.4 Compiler Stub Generation
	2.5 LLVM IR Generation
	2.6 LLVM JIT Execution
	2.7 JIT Debug Support

	3 Results
	3.1 Generated LLVM IR
	3.2 Performance
	3.3 Debugging
	3.4 Conclusions

	Acknowledgments
	References

