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Recent work in deep learning has created a voracious demand for more
compute cycles, but with the slowdown of Moore’s law, CPUs cannot keep
up with the demand. Thus, attention has turned to massively-parallel hard-
ware accelerators, ranging from new processing units designed specifically
for deep learning to the repurposing of existing technologies like Field-
programmable gate arrays (FPGAs) and graphics processing units (GPUs).
While these accelerators can provide immense speedups over traditional
CPUs in certain domains, application programmers must take great care in
optimizing code. In this work, we focus on GPUs and explore how 1) memory
access patterns, and 2) memory abstractions can affect the performance of
massively-parallel hardware accelerators, in the context of matrix multiply.
We show that by optimizing memory access patterns, we can achieve over
15× speedups and choosing the wrong memory abstractions can lead to a
40× slowdown. Thus, we show the importance of memory in programming
modern GPUs.
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1 SUMMARY
In this work, we analyze the performance considerations of matrix
multiplication on GPUs, as a case-study of workloads on massively-
parallel hardware accelerators. GPUs and, more generally, SIMD
architectures have different performance characteristics (e.g. lower
clock cycle but many more cores) than standard CPUs and so the
performance considerations dramatically change. We analyze 6 ver-
sions of matrix multiplies, which represent a variety of optimiza-
tions (primarily dealing with memory efficiency) that highlights
some performance considerations in GPU programming. We also
study the three memory abstractions CUDA offers. We find that
seemingly simple decisions can make up 15× and 40× difference in
performance for memory access and abstractions respectively.
Equal work was performed by both project members.

2 INTRODUCTION
In recent years, deep learning has delivered incredible results in
applications ranging from classifying images [He et al. 2016] to ad
placement [Bours 2017]. These results, coupled with the plateau
of clock speeds [Eeckhout 2017] have led to an incredible demand
for more floating point computation. A variety of new hardware
accelerators have been developed and repurposed to address this
growing computational, including Google’s Tensor Processing Unit
[Jouppi et al. 2017], Microsoft’s Project Brainwave built on FPGAs
[Blog 2017], Graphcore’s Intelligence Processing Unit [Graphcore
2017], and NVIDIA’s Graphics Processing Unit (GPU) [NVIDIA 2016,
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2017]. Given the trends in deep learning, we expect these demands
to only increase.

However, these hardware accelerators are designed with very dif-
ferent applications in mind. For example, consider the GPU. GPUs
were initially designed for graphics processing, but are now primar-
ily used for single instruction, multiple data (SIMD) applications, in
which many processing units apply the same operation on many
pieces of data simultaneously. The NVIDIA P100 has 3584 CUDA
cores and the NVIDIA V100 has 5120 CUDA cores, which allows
these accelerators to achieve up to 9.3 and 15 tera-floating point
operations per second (FLOPS) [NVIDIA 2016, 2017]. However, each
individual CUDA core has limited performance: the V100 has a
clock speed of 1530 MHz, compared 2666 MHz for some Intel CPUs
[NVIDIA 2017]. In order to realize the potential of GPUs, programs
must divide work into many small chunks that can execute in paral-
lel.
Moreover, the CPU still serves as an intermediary between the

application and the GPU. Data must be transferred from the CPU to
GPU before computation can begin, and results must be transferred
back to CPU when the computation finishes. As a result, in addi-
tion to normal memory management, extra care must be taken to
efficiently transfer data between devices. In case of NVIDIA GPUs,
there are several abstractions to simplify memory management
between devices.

In this work, we explore performance considerations of massively
parallel architectures, specifically in the context of GPUs. We ana-
lyzed various computational and memory optimizations of matrix
multiply, which is a critical operation in deep learning, and more
generally, in scientific computing.

The remainder of the paper continues as follows. The Background
section overviews thememory hierarchy and abstractions of modern
NVIDIA GPUs, followed with a brief review of matrix multiplication.
The Methods outlines our system set up and the 6 variants of matrix
multiplication considered. The Results section looks at each of these
variants for 3 different memory management systems and a variety
of matrix sizes. We then conclude with a summary of our work and
key takeaways for efficient CUDA programming.

3 BACKGROUND

3.1 GPUs
While GPUs were initially designed for graphics processing, they
have been repurposed for scientific computing [top 2017; Fan et al.
2004] and, more recently, deep learning [Jia et al. 2014]. Modern
GPUs have many more cores that can support thousands of concur-
rent threads. However, these cores are simpler and are primarily
used for floating point operations. Additionally, the total bandwidth
for on-GPU memory is typically much higher the bandwidth from
CPU to RAM [Fan et al. 2004]. Given these differences in design,
GPUs and CPUs have a variety of trade-offs, with GPUs excelling in
computations that have a significant amount of similar operations
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Fig. 1. The P100 SM architecture. Each SM consists of 56 cores and has its
own L1 cache and shared memory. This diagram is taken from [NVIDIA
2016].

and high data-locality. This style of parallelism is known as Single
Instruction, Multiple Data (SIMD).
As GPUs have limited use, they are used as accelerators. While

there are many performance considerations in programming with
hardware accelerators, we focus on memory aspects in this work.

3.1.1 GPU memory abstractions. The programming abstraction
of choice for NVIDIA GPUs is CUDA, which offers three methods
for memory management: manual memory management, unified
virtual addressing (UVA), and unified memory [NVIDIA 2016].

As the CPU and GPU are separate physical devices, each with
it’s own memory, data must be transferred to and from the GPU
(typically through PCI-E). In manual memory management, this was
the abstraction offered to CUDA programmers, i.e. no abstraction.
Thus, data must be manually copied to and from the GPU. This
abstraction was the only one offered until CUDA v4.
UVA is an abstraction that allows the CUDA programmer to

program as if the GPU and CPU shared a single address space
[Schroeder 2011]. UVA works as follows: if the accessed memory
does not reside on the current device (i.e. a given GPU), it will copy
the data to the current device. Concretely, if the GPU attempts to
access data on the CPU, under UVA, the data will be transferred
to main memory before being accessed. Additionally, UVA allows
“zero-copy" memory, which can access host memory via the PCI-E
link. While this provides a simple way of addressing memory, it does
not provide any performance improvements over manual memory
management. For example, the zero-copy abstraction is limited by
PCI-E performance.

CUDA has offered unified memory from v6 (and improved it in v8)
[NVIDIA 2016]. Unified memory allows applications to use a single
pointer in both CPU and GPU functions. From CUDA v8, unified
memory allows for virtual addressing, which will automatically
page-fault on non-resident memory. Virtual addressing allows for
seamless transfer between GPUs or from the CPU and GPU. This
abstraction is continuously being improved by NVIDIA [NVIDIA
2017].

3.1.2 GPU memory hierarchy. The GPU memory hierarchy dif-
fers from the CPU memory hierarchy. First, we discuss the layout
of a GPU. NVIDIA GPUs are broken down into streaming micropro-
cessors (SMs), which contain multiple cores. Each core runs a warp
of multiple threads. In the P100 architecture, there are 64 cores per
SM and 56 SMs per GPU [NVIDIA 2016].
Each SM has its own L1 cache and 64 KB of shared memory. In

GPUs, the L1 cache is also known as a texture and is read only. The
L2 cache is shared between SMs and lies between the SMs and global
memory [NVIDIA 2016].

The SM architecture and hierarchy is diagramed in Figure 1.

3.2 Matrix multiply
While matrix multiplies are a simple operation, they are extremely
important in scientific computing and even deep learning. For exam-
ple, multi-layer perceptrons (MLPs) currently make up a plurality
of the deep learning workload in Google’s infrastructure [Jouppi
et al. 2017], and the bulk of the computation in MLPs are in matrix
multiplies.
The naive matrix multiply algorithm requires O(N 3) multiply-

adds and O(N 2) memory accesses. However, naively performing
the matrix multiply results in highly inefficient data access patterns,
which significantly degrades performance (which we show in the
results). In this work, we explore a variety of optimizations, mainly
from efficient memory access, of the matrix multiply.

While there are fastermatrixmultiply algorithms (notably Strassen’s
algorithm), we do not study these in this work [Strassen 1969]. Tun-
ing Strassen’s algorithm is a complicated process, with “conven-
tional wisdom" up until 2016 noting that the naive matrix multiply
is competitive with Strassen’s algorithm [Huang et al. 2016].

3.3 Prior work and relationship to PL
Matrix multiplication is a highly studied problem and NVIDIA pro-
vides a highly optimized version through CuBLAS. However, its
implementation is proprietary. Our goal was primarily to under-
stand the performance characteristics of a popular GPU workload.
While we could have decided on another workload, we decided on
matrix multiply due to it’s popularity.
The CUDA programming framework and it’s various memory

abstractions offer a balance between usability and performance. Our
work explores this trade-off.

4 METHODS

4.1 System setup
All experiments were performed on a server with one NVIDIA P100
GPU and an Intel Xeon E5-2690 (clock speed of 2.60GHz). We used
CUDA Version 8.0 and CuBLAS version 2.0.

To time each function, we “warmed up" the function by running
it 3 times (this was done to ensure the instructions were transferred
to the GPU and the GPU was not in an idle state). Then, the function
was run 10 times and the average time was recorded. Correctness
was evaluated against CuBLAS SGEMM as ground truth, where we
allowed a maximum error of 1x10−5.

Each function was run with the three different memory manage-
ment options (manual, UVA, unified).
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Fig. 2. The naive matrix multiply computation. Each row and column is
accessed sequentially.

The matrix multiplication code was largely inspired by [Wijtvliet
[n. d.]]. We wrote the entirety of the testing and timing framework.

4.2 Matrix multiply
We implemented 6 version of matrix multiply, and compared against
an optimized CuBLAS matrix multiply provided by NVIDIA.
Throughout, we denote the input matrices as A and B, and the

resulting matrix C = A × B. Elements of the matrices are denoted
by subscripts, e.g. Ai j . To simplify the analysis, we only multiply
square matrices. We denote the size as N .
Unless specified, for a matrix of size N we use a block size of

16x16 and threads equal to N /16. The thread and block IDs will be
denoted as tx , ty and bx ,by respectively.

4.2.1 Naive matrix multiply. In the naive matrix multiply, each
thread computes a single element inC . Namely, block b and thread t
will compute Cby×16+ty,bx×16+tx . Ci j is computed by looping over
row Ai and column Bj . A schematic of the computation is shown in
Figure 2.

Every elementCi j requires exactly N multiply-adds and 2N mem-
ory accesses. Thus, every multiply-add requires 2 memory accesses.
As we see in the results, this dramatically affects performance.

4.2.2 Tiled matrix multiply. In the tiled version of matrix multi-
ply, each thread will still compute a single element in C . However,
in the tiled version of matrix multiply, each thread block contains a
local shared array and A and B are loaded into the shared memory
before being multiplied. We can achieve speedups this way as shared
memory can be up to 100× faster than uncached, global memory. A
schematic of the computation is shown in Figure 3
Each thread loads one element from A and one element to B for

each 16 multiply-adds. We note that the size of the shared array
could have been optimized, but we did not explore this optimization.

4.2.3 No bank conflict matrixmultiply. Sharedmemory onNVIDIA
GPUs is split into “banks" of memory (a similar construct on the

Fig. 3. The tiled matrix multiply computation. The input matrices are broken
down into sub-matrices and then multiplied.

CPU is the idea of a cache line), which can be accessed simulta-
neously. Thus, loading from b distinct banks will result in b times
faster access compared to loading a single bank of memory. How-
ever, if multiple threads request access to the same bank of memory,
this will cause a memory bank conflict, which causes the memory
accesses to be serialized.
In the naive tiled matrix multiply, loading elements from global

memory will cause a bank conflict, as B is loaded in a column-
oriented fashion. This can be optimized by instead loading B in a
row-oriented fashion and changing the computation to account for
this.

4.2.4 Compute optimized matrix multiply. The above matrix mul-
tiply is still a variant of the tiled matrix multiply, in that only the
memory loads are modified. However, each multiply-add requires ac-
cess to shared memory. Instead, we can change the compute pattern
by computing outer products of sub-matrices. This change decouples
the access to B from the access to C , which allows us to store a
single element of B and a portion of C in registers.
Concretely, this is done in three steps. First, a submatrix of A is

loaded into memory. Then, each thread loads a single element of B
and a single column of C in registers. Finally, the outer product is
computed and stored.

4.2.5 Unrolled-loop matrix multiply. To further pipeline and re-
duce branch misprediction and stalling, we can unroll the inner
loops for slightly improved performance.

5 RESULTS

5.1 Effects of optimizations
We hypothesized that the optimizations we added would dramati-
cally increase performance over the naive matrix multiply, but be
far from the highly optimized CuBLAS version.
The following analysis is done with the results from manual

memory management.
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Fig. 4. 6 implementations of matrix multiplication on a NVIDIA P100 GPU
for various matrix size using manual memory management. All points are
the average of 10 runs and the matrices are read from device memory
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Fig. 5. 6 implementations of matrix multiplication on a NVIDIA P100 GPU
for various matrix size using unified memory management. All points are
the average of 10 runs and the matrices are read from device memory
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Fig. 6. 6 implementations of matrix multiplication on a NVIDIA P100 GPU
for various matrix size using unified virtual addressing. All points are the
average of 10 runs and the matrices are read from device memory

As we can see in Figure 4, this was indeed the case. The P100 can
achieve a maximum of 9.3 TFLOPs, which the optimize CuBLAS
version approaches, achieving a maximum of 8.95 TFLOPs at a
matrix size of 16384. Our most optimized version achieves 4.07
TFLOPs, which is just under 2× slower than the CuBLAS version.
While the exact algorithm is proprietary, we suspect that a variety
of a factors contributed to the performance difference, including
further cache optimization, and hand-tuned assembly, to achieve
multiple floating-point operations per cycle. As a sanity check, the
NVIDIA P100 has 3584 CUDA cores clocked at 1.328 GHz, which
gives 4.759 TFLOPs assuming one operation per cycle.

The naive version of the matrix multiply achieves a maximum of
0.5 TFLOPS at a matrix size of 512 and 0.27 TFLOPS at a matrix size
of 16384. We see that the naive version is over 15× slower than our
most optimized version at the largest matrix size.

5.2 Impacts of memory management
As is apparent from Figure 4 and Figure 5, we see that the maximum
performance achieved by manual memory management and unified
memory management is approximately the same. However, we note
that there is a dip in performance at intermediate matrix sizes for all
methods when using manual memory management or UVA. This
is due to the size of the shared memory for each block of CUDA
cores. The NVIDIA P100 has a 64KB shared memory between each
block of 64 CUDA cores. Because we are using a block size of 16
for each set of 64 CUDA cores, we use all of the shared memory for
a matrix size of 1024x1024 (16 * 1024 * (32 / 8) = 64KB), which is
exactly when we see the drop in performance. Increasing the matrix
size by a factor of 2, then requires us to make two trips to fetch data.
In the case of UVA, this requires going back to host memory, which
dominates the cost, so we see throughput drop by close to a factor
of 2. In the manual memory management case, we only need to go
to global memory on the GPU, so there isn’t as much of a drop in
performance. In contrast, unified memory management avoids this
problem entirely. Because the access pattern is known at compile
time, unified memory can proactively fetch data from the GPUs
global memory and hide additional latency.

We also saw that UVA performed significantly worse than either
manual memorymanagement or unifiedmemorymanagement. This
is expected: every memory access must go over PCI-E. Notably, even
CuBLAS was over 30× slower under UVA than manual or unified
memory management. Our most optimized version was over 50×
slower under UVA.

6 CONCLUSION
In this work, we analyze performance considerations when utilizing
massively parallel hardware accelerators in the context of GPUs
and matrix multiply. We evaluate 6 implementations of matrix mul-
tiply for various matrix sizes and show that optimizing the memory
access patterns can lead to over a 15× speedup over the most naive
algorithm. Similarly, we compare three CUDA memory manage-
ment abstraction and see that how memory is accessed from the
accelerator can cause a similarly dramatic effect, causing over a 40×
slowdown.

, Vol. 1, No. 1, Article . Publication date: December 2017.



Efficient CUDA • :5

REFERENCES
2017. The Top 500 Supercomputer List. (2017). https://www.top500.org/
Microsoft Research Blog. 2017. Microsoft unveils Project Brainwave

for real-time AI. https://www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/. (2017). Accessed: 2017-09-04.

Ben Bours. 2017. GOOGLE AND MICROSOFT CAN USE AI TO EXTRACT MANY
MORE AD DOLLARS FROM OUR CLICKS. (2017).

Lieven Eeckhout. 2017. Is MooreâĂŹs Law Slowing Down? WhatâĂŹs Next? IEEE
Micro 37, 4 (2017), 4–5.

Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. 2004. GPU cluster for
high performance computing. In Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference. IEEE, 47–47.

Graphcore. 2017. Accelerating Next Generation Machine Intelligence. https://www.
graphcore.ai/technology. (2017). Accessed: 2017-09-04.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

JianyuHuang, TylerM Smith, GregMHenry, and Robert A van deGeijn. 2016. Strassen’s
algorithm reloaded. In High Performance Computing, Networking, Storage and Anal-
ysis, SC16: International Conference for. IEEE, 690–701.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional Archi-
tecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ra-
minder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture (ISCA ’17). ACM,
New York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

NVIDIA. 2016. NVIDIA Tesla P100 Whitepaper. https://images.nvidia.com/content/
pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf. (2016).

NVIDIA. 2017. NVIDIA Tesla V100 GPU Accelerator. https://images.nvidia.com/
content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.PDF. (2017).

Tim C Schroeder. 2011. Peer-to-peer and unified virtual addressing.
Volker Strassen. 1969. Gaussian elimination is not optimal. Numerische mathematik 13,

4 (1969), 354–356.
Mark Wijtvliet. [n. d.]. Matrix multiplication in CUDA. ([n. d.]). http://www.es.ele.tue.

nl/~mwijtvliet/5KK73/?page=mmcuda

, Vol. 1, No. 1, Article . Publication date: December 2017.

https://www.top500.org/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.graphcore.ai/technology
https://www.graphcore.ai/technology
https://doi.org/10.1145/3079856.3080246
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.PDF
https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-NV-US-WEB.PDF
http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmcuda
http://www.es.ele.tue.nl/~mwijtvliet/5KK73/?page=mmcuda

	Abstract
	1 Summary
	2 Introduction
	3 Background
	3.1 GPUs
	3.2 Matrix multiply
	3.3 Prior work and relationship to PL

	4 Methods
	4.1 System setup
	4.2 Matrix multiply

	5 Results
	5.1 Effects of optimizations
	5.2 Impacts of memory management

	6 Conclusion
	References

