
Roguelike++
Analyzing class features and expressiveness

Connie Xiao
Stanford University
coxiao@stanford.edu

William Jiang
Stanford University
ziranj@stanford.edu

1 SUMMARY
In this project, we explore class functionality under the course con-
cept of expressiveness by extending our class implementation in
Assignment 2: Roguelike. More specifically, we implemented the
following class features: states and a combination of components
and mixins. In order to evaluate the effectiveness, for each of the
new class features, we developed an additional feature to the Rogue-
like game. By implementing new game features using our new class
features, we were able to see how effective the class features were
in terms of creating a new immortal state for the hero and adding
game items that influence gameplay.

2 BACKGROUND
2.1 States
In games like Roguelike, to make the game more interesting, char-
acters can often change their states or mode multiple times during
the game. For example, the Hero can switch between the "immortal"
mode and the "normal" mode back and forth during the game. In
order to accommodate this feature, new functionalities need to be
added in Class which enable the class to create and enter different
states. In addition, states must be able to create new methods or
override the original methods. Adding the state feature in the Class
enriches the expressiveness of the program. State feature makes
programmers more productive because they can more easily and
flexibly create characters and methods in different states. Without
state feature, programmers might need pre-define all the different
state-dependent behaviors in methods, and pass in special param-
eters to the methods to tell them what states you are currently
in.

2.2 Component-mixins
An alternative paradigm to classes in object oriented programming
(OOP) are components in a component based design. Object ori-
ented programming, a popular programming paradigm used by
well-known languages like Java, Python, and C++, includes defin-
ing subclasses that can depend on or inherit attributes with some
main class. Instances of a class in OOP include the data and the
ability to use of the methods defined in its class and also classes it
inherits.

On the other hand, a component based design expresses an object
like an entity that is composed of components. Components are de-
signed to be multiple-use, non-context-specific, composable, encap-
sulated, and a unit of independent deployment and versioning[4].
In comparison to classes in OOP, components in component based
design are less dependent which could lead to more code reusability.
For example, let all objects be defined as X, Y, or Z.
On top of that, some of these objects can be considered good or bad.

In order to represent all possible objects through object oriented
programming, good or bad could each inherit from X, Y or Z or visa
versa. Regardless, this would require code to be duplicated as visu-
alized in figure 1. Instead, we could use components to express this
pattern as demonstrated in figure 2. Visualizing components lends
to a more horizontal diagram with fewer vertical dependencies.
Arrows here represent including a component. Figure 2 depicts an
object instance that is Y and good. We can see that this model even
allows programmers to describe a bad Y object without much addi-
tional code, which is something that would require code duplication
and/or refactoring in a object oriented class.

A drawback of using components is long method calls. Since
components are contained within an instance, a method call would
need to go through the component resulting in a method calls
like object.component.method(). The method calls get longer
when components interact with other components, which makes
code less readable and more tedious to write. This issue could be
mitigated with mixins. A design with mixins is similar to one with
components but instead of adding in components to the instance,
the methods are directly added into the class. Consequently, we
would be able to call a method with object.method().

We wanted to see if using a component based design with mix-
ins would make it easier for programmers to express certain pro-
gramming concepts in practice. Through analyzing the vantages of
component based design and OOP in an implementation of a game
feature, we can gain insight into the expressive qualities of both
paradigms.

3 STATES
3.1 Approach
We first studied the implementation of state features through an
existing code here: https://github.com/kikito/stateful.lua [3]

This existing code, stateful.lua can be added to the origi-
nal class to enable state features. We originally tried using the
stateful.lua with our original Class function from the assign-
ment. However the two are not compatible and after a long time
of trying to make the stateful.lua compatible with the original
Class, we were still not successful. We eventually changed plan,
and tried implementing a simplified version of stateful.lua in-
side the original Class function, so that we do not need a separate
stateful.lua anymore.

With the new state features, adding a new state and defining
methods for that state become simple. Below are an example if you
want to add a new "immortal" state to the Hero, and add a new
SetHealth() function to the immortal state (which will override
the original SetHealth() function). This code is implemented in
the Hero.lua.



Figure 1: Object oriented designs (gray boxes represent duplicated code)

Figure 2: Component based design

Hero = class.class(Entity, {...})
local immortal = Hero:addState('immortal')
function immortal:SetHealth(h)
self.game:Log('I am UNBREAKABLE!!')
end

Similarly, you can add any number of additional states as well.
Once the states and methods are created, in game.lua you can
change the character’s states as follows:
self.hero:gotoState('immortal')

You can also ask for the current state of an object. For example
in monster.lua, you can say:
if self.game.hero.getState() == 'immortal' then ...

The way state features is implemented is that in the Class, we
added two new values:
Class.states = {}
Class.currentState = nil

Class.states is a table which will store any new states that
get created later. For example, after you add the immortal state and
add the immortal:SetHealth() method, now the Class.states
will become:
Class.states = {
"immortal" = {function SetHealth(h)...end}
}

Adding new states andmethodswill similarly add to this Class.states
value.
In game.lua once you make the Hero go to the immortal state, then
the Class.currentState will become:
Class.currentState = "immortal"

This variable is used to track the current state of the object, with
nil being the default/original state. test test

3.2 Game feature
In the game, we placed some treasure items labeled I throughout
the maze. The player can navigate the Hero to pick up these treasure
items. Once Hero picks them up, it turns into the immortal state,
and the character changes from * to @ and color changes as well. In
the immortal state, Hero does not lose health when being attacked
by monsters, and can attack monsters just like before. Each treasure
item enables Hero to become immortal for 30 steps, and after that,
Hero automatically becomes normal state (mortal) again. Being
immortal does not recover health, so if Hero had health of 2 before
turning immortal, during immortal state Hero is invincible, but
once Hero exits immortal state, it still only has a health of 2 left.
The effect of treasure item is cumulative, so for example if Hero
picks up 2 treasure items in a row, it will get almost 60 steps of
immortality. However, when Hero hits a bomb B, then it dies even
if it is in an immortal state.

3.3 Results
We implemented the state features in class, and used the state fea-
tures to make Hero go back and forth between immortal and normal
modes during the game. Therefore the success of our state feature
implementation can be measured by the success of this new game
feature as well as the ease of programming. As shown in the demo
during our presentation, we achieved the goal of implementing
these new game features. In addition, the new state features make
the code very clean and intuitive. As mentioned previously, for
example this was all we needed to add a new state and method to
the Hero:

local immortal = Hero:addState('immortal')
function immortal:SetHealth(h)
self.game:Log('I am UNBREAKABLE!!')
end

The code is also flexible, so that in the future if you want to
add some other new states, you can just add to the previous code,
without having to edit the previous code.

4 COMPONENTS AND MIXINS
4.1 Approach
As a way of easing ourselves into these new designs, we first tried
adding mixins into our class implementation. This helped us get
a better idea of how mixins worked. In lua, this involves merging

2



Figure 3: Game with new features

Figure 4: Immortal state

Figure 5: Hero in immortal state

over methods from the mixin with the class’s methods.
Usage:
local Mixin = {}
function Mixin:foo() return 'foo' end
function Mixin:bar() return 'bar' end
local ParentClass = ...
local ChildClass = ...

ParentClass:include(Mixin)
local c = ParentClass.new()
local d = ChildClass.new()
assert(c.foo() == "foo")
assert(d.bar() == "bar")

Next, we created a separate class file in order to implement a
component based design. The component class is different from
the original class in that there is a component list instead of a
methods list and the metatables are not set for inheritance between
child and parent classes. Each of the components is a table with
methods. Components are described in the same way as classes are:
with a constructor, data, and methods. Initially, we tried adding
components to the class. This means that every instance of that class
would have the same components. The component was initialized
when it was added to the class. However, this prevent us from
customizing each instance of the class because the values used to
initialize the components were fixed once each component was
added to each class.
Components:

local partOne = {
constructor = function (self, name)
self.name = name
end,
data = {
name = '',
var = 0
},
methods = {

change = function(self, var)
self.var = var
end,
getVar = function(self, var)
return self.var

3



end,
getName = function(self)
return self.name
end

}
}

local partTwo = {
constructor = function (self, value)
self.value = value
end,
data = {
value = 0,
two = 2
},
methods = {
getTwo = function(self)
return self.two
end,
change = function(self)
self.two = 1
return self.two
end

}
}

Usage:
-- easy to make multiple copies of same objects
local Entity1 = componentClass.class()
Entity1:addComponent("partOne1", partOne, "name")
Entity1:addComponent("partOne2", partOne, "other name")
Entity1:addComponent("partTwo", partTwo)
local entity1 = Entity1.new()
-- inconvenient to change initial values
local Entity2 = componentClass.class()
Entity2:addComponent("partOne1", partOne, "name")
local entity2 = Entity2.new()

In our second iteration we moved addComponent such that it
became a method of the instance within the new method. This
means that each instance is responsible for adding components
as needed and initialization would occur for that specific instance.
This gives us a more reasonable amount of freedom in customizing
the instances.
Usage:
local Entity = componentClass.class()
local entity1 = Entity.new()
local entity2 = Entity.new()
entity1:addComponent("partOne1", partOne, "name")
entity1:addComponent("partOne2", partOne, "other name")
entity1:addComponent("partTwo", partTwo)
entity2:addComponent("partOne1", partOne, "new name")
entity2:addComponent("partTwo", partTwo)

Lastly, we combinedmixins with our component implementation.
We do this when adding components by adding the componentâĂŹs
methods to our instance if they are unique.
for k, v in pairs(component.methods) do

Figure 6: Items in the game (B and I)

Figure 7: Immortal item

if type(v) == "function" and k ~= "new" then
if self[k] == nil then

self[k] = function(...)
return component.methods[k](dataInst, ...)

end
elseif type(self[k]) == "function" then

self[k] = function(...)
return "duplicate method names:

use components to call method"
end

end
end

end

4.2 Game Feature
In order to see how useful our component-mixin class design was,
we implemented an immortal item and bombs into our game. If the
hero picks up the immortal item, the hero becomes immortal to the
damage of the monsters for 30 steps. If the hero runs into a bomb,
the bomb blows up the hero and the game automatically ends.

We have the following components: basicItem, bomb, immor-
tal. It is constructed in a way that each item contains basicItem,
which creates an item in the game that essentially does nothing
(stays in one place, inconsequential to the game, contains default
values). This is parallel to the entity.lua class. Then we add the
other components to the relevant items we want to create.

4.3 Results
An component based design looks more readable when creating
instances of the item.

4



local immortalItem = Item.new()
immortalItem:addComponent("basicItem", basicItem,
self, self:RandomFloor())
immortalItem:addComponent("immortal", immortal)

The component parts can serve as a description of an item and it
is easy to infer the relevant initialized values chosen for particular
component.

Our particular use case could have been implemented in an
object oriented fashion by having the superclass be equivalent to
basicItem and subclasses be bomb and immortal. This is most likely
because we were simultaneously imagining how this could also
be implemented with class.lua and we are more used to thinking
in an object oriented manner. However, if we wanted to add more
complex features later on, a component based design would be
more robust and readable.

For example, if we converted all the code into a component based
design and wanted to add the ability for immortal items to move,
we would just create a moving component that would be included
in hero, monster, and the immortal items.

It would be interesting to create treasure with a combination of
object oriented programming and mixins. This would include the
benefits of object oriented programing while being able to include
methods or data that can be shared horizontally across objects. The
drawbacks of this would include the drawbacks of using mixins,
which include needing unique method names and potential mixin
method conflicts in setting fields. However, we would assume that
most of the functionality and attributes of the object are expressed
within classes so we would not be dealing with many mixins for
each class. With a minimal number of mixins, the aforementioned
drawbacks are unlikely to occur. Mixins would come in handy for
rarer situations to help reduce the the lines of duplicate code. While
doing further researching, we found a popular OOP library for lua
also has support for mixins [2], which affirms this reasoning. In
addition, scala uses mixins with classes as well [1].

5 CODE
The code for this project can be found at:
https://gitlab.com/conniexiao/cs242

6 LIST OF WORK BY EACH STUDENT
Equal work was performed by both project members.

REFERENCES
[1] [n. d.]. Class Composition with Mixins. ([n. d.]). Retrieved December 13, 2017

from https://docs.scala-lang.org/tour/mixin-class-composition.html
[2] Enrique García Cota. 2015. Middleclass. (2015). Retrieved December 13, 2017 from

https://github.com/kikito/middleclass
[3] Enrique García Cota. 2016. Stateful. (2016). Retrieved December 13, 2017 from

https://github.com/kikito/stateful.lua
[4] David G Messerschmitt, Clemens Szyperski, et al. 2005. Software ecosystem:

understanding an indispensable technology and industry. MIT Press Books 1
(2005).

5

https://docs.scala-lang.org/tour/mixin-class-composition.html
https://github.com/kikito/middleclass
https://github.com/kikito/stateful.lua

	1 Summary
	2 Background
	2.1 States
	2.2 Component-mixins

	3 States
	3.1 Approach
	3.2 Game feature 
	3.3 Results

	4 Components and Mixins
	4.1 Approach
	4.2 Game Feature
	4.3 Results

	5 Code
	6 List of work by each student
	References

