
Exploring Hardware Parallelism’s Influence on Programming
Through Convolution in CUDA and PyTorch

A CS242 Project Report

Sam Redmond
Stanford School of Engineering

Stanford, California
sredmond@stanford.edu

Christopher Sauer
Stanford School of Engineering

Stanford, California
cpsauer@stanford.edu

ACM Reference Format:
Sam Redmond and Christopher Sauer. 2017. Exploring Hardware Paral-
lelism’s Influence on Programming Through Convolution in CUDA and
PyTorch: A CS242 Project Report. In Proceedings of CS242 Autumn 2017.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.100.10

1 SUMMARY
In our final project, we explored programming paradigms for gen-
eral parallel computing on GPUs. In a world in which performance
gains increasingly come from parallel hardware, our goals were (1)
to understand how sequential programming paradigms compare to
those used on the massively parallel hardware of a GPU and (2) to
understand the benefits and drawbacks of the parallel paradigms
that seek to replace sequential ones. We began by exploring the
historical context of CUDA and GPGPU and by getting an under-
standing of how parallel hardware architectures influence which
programming constructs can be executed efficiently. We then im-
plemented several solutions to a classic parallel problem, image
convolution, directly in CUDA and benchmarked against imple-
mentations we wrote using PyTorch, cuDNN, and sequential and
parallel C++. We found CUDA to be surprisingly natural to use
for sequential programmers, even compared to the wrappers that
intend to abstract it away. We also found that it offered significantly
more freedom in programming patterns by allowing intra-kernel
compositionality. We concluded our project by exploring the bene-
fits of that compositionality on programmability and performance
by generating the following edge saturation effect.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CS242 Autumn 2017, December 2017, Palo Alto, California USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-89. . . $1,000,000.00
https://doi.org/10.100.10

2 BACKGROUND
2.1 Project Context
Both of us have relied upon GPUs as co-processors to accelerate
deep learning workloads; however we have always been abstracted
far away from the hardware. With this project, we aimed to under-
stand how languages and programming paradigms change beneath
that abstraction boundary to adapt to the highly parallel hardware
of a GPU.

Figure 1: PyTorch, TensorFlow, cuDNN and CUDA.

In particular, libraries like PyTorch and TensorFlow wrap highly
optimized, parallel operations on GPUs into matrix operations and
auto-differentiation. As long as the operations you wish to execute
can be easily expressed in terms of their library primitives, these
libraries allow the parallel operations to fit naturally into easy-
to-write, single-threaded, imperative Python programs, usually
without requiring knowledge of how the underlying hardware
works. The fact that TensorFlow and PyTorch can impose such a
clean abstraction boundary with so few leaks is certainly worthy
of study. However, in this project we were interested in exploring
beneath the abstractions provided by those libraries. In particular,
we wanted to better understand the following:

(1) How do programming languages change beneath the bound-
ary to accommodate far greater hardware parallelism than
on a CPU?

(2) What performance penalties do the abstractions provided
by those libraries incur?

(3) What additional flexibility does programming in CUDA pro-
vide?

We were not disappointed by CUDA’s graceful adaptation of
sequential constructs over to massively parallel ones, by the perfor-
mance gains from directly writing CUDA code, or by the additional
freedom of composability offered by CUDA.

2.2 Why are GPUs so Important?:
Moore’s Law and the Rise of Parallelism

We are interested in understanding how languages change to bet-
ter support GPU parallelism not only because we are reliant upon

https://doi.org/10.100.10
https://doi.org/10.100.10

CS242 Autumn 2017, December 2017, Palo Alto, California USA S. Redmond and C. Sauer.

their output but also because we are moving toward a world with
greater and greater hardware parallelism. As improvements in se-
quential execution plateau, future gains must come from increased
parallelism.

Consider the following chart, shown in class:

Figure 2: Dramatic plateau in single core speeds in 2004.
Graph shown in class on Nov. 8, 2017 [9].

Figure 2 should cause panic. As computer scientists, we have re-
lied on the exponential march of improved processor performance
to continually unlock new opportunities without having to consid-
erably complicate our programs.

Programming language development is certainly no exception.
One example is our reliance on continued relaxation of performance
constraints to allow for better and better abstractions in order to
increase programmer productivity. Since with current paradigms,
even moderate parallelism tends to introduce significant complexity
for the programmer, which is why most programs are still based
around a single thread, a plateau in single-core speed would be
disastrous.

Thankfully, this trend did not continue quite as badly as it seemed
in the mid 2000s.

Figure 3: SPEC benchmarks for most processors released be-
tween 1995 and 2012. Note the plateau around the single-
core crisis in 2004, and the subsequent return to increases
at a lower rate thereafter. Graph from [1].

Figure 3 presents perhaps a fairer view of how single core per-
formance has evolved. After the brief plateau from 2004-05, perfor-
mance continued to increase at 21%.

Figure 4: Moore’s law continues apace in terms of compute
per dollar, with its slope accelerating [17]. Note that all de-
vices in the upper right are GPUs.

Still, given the log scale, the difference is quite significant—52%
growth would quickly compound 21% growth into irrelevance. And
that is exactly what is happening. Moore’s law is happily continuing
apace—just look at Figure 4—except most of the gains are going
into massively parallel processors, like GPUs.

We are living in a world where it appears gains in massively par-
allel processors will quickly compound single or few-cored proces-
sors into computational irrelevance. This makes studying languages
that have succeeded in easing parallelism of the utmost importance.
This is especially true given that our traditional imperative and
object-oriented programming paradigms largely fail us in parallel
environments by being built around a linear thread of execution.
Again, recall that most programs use only one or at most a few
threads.

Since CUDA’s simplification and structuring of highly parallel
programming kicked off a revolution in using GPUs for acceler-
ating massively parallel workloads, it seems reasonable to learn
from CUDA how more commonly used languages might adapt to
parallelism in the future.

2.3 Project Phase 1: History of GPUs, the
Evolution of GPU Programming, and the
Rise of General Purpose Computation on
GPUs

We are young enough to not remember the historical context in
which general purpose computing on GPU evolved. To understand
the space of possible languages, it is important to learn the history
of programming languages for these devices. Therefore, the first
undertaking for our project was to compile such a history.

Since it has all happened so recently and is changing so fast,
there is a distinct lack of comprehensive accounts available online.
Here is what we compiled, first as a history and second as a timeline.

Exploring Hardware Parallelism’s Influence on Programming
Through Convolution in CUDA and PyTorch CS242 Autumn 2017, December 2017, Palo Alto, California USA

Modern graphics processing units (GPUs) were originally created
in the 1990s to accelerate realtime, scanline graphics, which is an
inherently parallel operation on triangles.

Customizations to the image were provided via shaders, written
in assembly languages like ARB or the DirectX Shader Assembly
Language (see Figure 5). Each shader was run in independently
in parallel, over pixels, vertices, etc. These languages were more
hardware configuration languages than general purpose computing
languages: They had fixed total program length and a very limited
instruction set.

1 ! ! ARBvp1 . 0
2 TEMP v e r t e xC l i p ;
3 DP4 v e r t e xC l i p . x , s t a t e . ma t r i x . mvp . row [0] , v e r t e x . p o s i t i o n ;
4 DP4 v e r t e xC l i p . y , s t a t e . ma t r i x . mvp . row [1] , v e r t e x . p o s i t i o n ;
5 DP4 v e r t e xC l i p . z , s t a t e . ma t r i x . mvp . row [2] , v e r t e x . p o s i t i o n ;
6 DP4 v e r t e xC l i p .w, s t a t e . ma t r i x . mvp . row [3] , v e r t e x . p o s i t i o n ;
7 MOV r e s u l t . p o s i t i o n , v e r t e xC l i p ;
8 MOV r e s u l t . c o l o r , v e r t e x . c o l o r ;
9 MOV r e s u l t . t e x coo rd [0] , v e r t e x . t e x coo rd ;
10 END

Figure 5: Example of ARB Shader Assembly Language from
[5]. Total execution length and the instruction setwere quite
limited, because the code was configuring a step in a hard-
ware rendering pipeline.

By 2002, pressures for more shader flexibility had driven graphics
hardware to become sufficiently general to support higher level
shading languages like Direct3D’s HLSL and OpenGL’s GLSL. In
subsequent versions, fixed-size hardware limitations disappeared
to allow these shaders to become become more like software than
configured hardware (see Figure 6). As an example, the number
of instructions quickly scaled from 12 to unlimited, as we would
expect for a software program.

1 l a y ou t (s t d 1 4 0) uni form Ma t r i c e s {
2 mat4 pro jMode lViewMatr ix ;
3 mat3 normalMatr ix ;
4 } ;
5
6 i n vec3 p o s i t i o n ;
7 i n vec3 normal ;
8 i n vec2 texCoord ;
9
10 out Ver texData {
11 vec2 texCoord ;
12 vec3 normal ;
13 } Ver texOut ;
14
15 vo id main ()
16 {
17 VertexOut . texCoord = texCoord ;
18 VertexOut . normal = no rma l i z e (normalMatr ix ∗ normal) ;
19 g l _ P o s i t i o n = pro jMode lViewMatr ix ∗ vec4 (p o s i t i o n , 1 . 0) ;
20 }

Figure 6: Example of GLSL from [14]. Note the resemblance
to C to help convey the new flexibility. Input variables sent
to all instances running in parallel are termed “uniforms.”
Per-thread inputs and outputs are labeled with the key-
words “in” and “out.” Each shader is typically in its own file,
not composed.

With single core speeds beginning to tap out in 2004, Intel and
AMD scrambled to release multicore chips in 2005, bringing hard-
ware parallelism into the mainstream. NVIDIA, noticing that GPU
hardware was now sufficiently general for non-graphics tasks, re-
leased CUDA in 2007, which allowed direct programming of non-
graphics workloads on GPUs. The language has easy interoperabil-
ity with C++, prioritizing ease of converting and sharing existing
CPU code. See analysis in Figure 7.

1 __g l o b a l _ _
2 vo id add (i n t n , f l o a t ∗ x , f l o a t ∗ y)
3 {
4 i n t index = t h r e a d I d x . x ;
5 i n t s t r i d e = blockDim . x ;
6 f o r (i n t i = index ; i < n ; i += s t r i d e)
7 y [i] = x [i] + y [i] ;
8 }

Figure 7: Example of CUDA from [13]. Input variables sent
to all instances running are now expressed as the input
variables to the kernel, while values sent into each thread
are sent in as the threadIdx and blockDim “global” vari-
ables. The kernel would run as a valid C++ function if the
CUDA references were stripped and can be intermixed with
C++ code in the same file. Different kernels can easily draw
on the same helper functions, declared with “__device__.”
Code that runs on both GPU and CPU can be declared with
“__host__ __device__”.

Since then, there has been significant wrapping of those APIs,
especially for matrix operations and machine learning workloads.
Pytorch, Tensorflow, and others are all dependent on NVIDIA’s
cuBLAS and cuDNN implementations, while OpenCL support re-
mains sparse. We will describe the tradeoffs between these inter-
faces more in later sections.

Separately, OpenACC was released for easily parallelizing exist-
ing programs explicitly based upon OpenMP, which we touched on
in class. Like OpenMP, OpenACC is based on compiler directives
(see Figure 8), but the fine-grained control around the different
task and memory models is somewhat problematic, and there is no
working implementation for most platforms.

1 / / OpenMP
2 #pragma omp p a r a l l e l f o r c o l l a p s e (2) s ch edu l e (gu ided)

1 / / OpenACC
2 #pragma acc k e r n e l s {
3 #pragma acc loop independen t c o l l a p s e (2)

Figure 8: OpenMP code for guided parallelization of a double
for loop and the equivalent OpenAcc code. OpenMP code is
from one of Christopher’s programs. OpenAcc is from [19].

(Sources [6, 7, 10, 12, 14, 15, 19–23, 26])

2.4 GPU Language Evolution Timeline
• 1979 — Basic Linear Algebra Subprograms (BLAS) Released
for Fortran
• 1992 — OpenGL released by Silicon Graphics

CS242 Autumn 2017, December 2017, Palo Alto, California USA S. Redmond and C. Sauer.

• 1996 — Direct3D released by Microsoft
• 1997 — OpenMP released
• 2002 — HLSL released by Microsoft to Replace DirectX
Shader Assembly Language (!), enabled by increased flexible
GPU rendering pipelines.
• 2004 — GLSL released by the OpenGL Architecture Review
Board (ARB), replacing the ARB assembly language.
• 2004 — Single-core speeds begin to tap out
• 2005 — Intel releases first dual-core processor intended for
normal use, beating AMD’s long-announced processor an-
nouncement by a few weeks. See [24].
• 2007 — CUDA released by NVIDIA, giving direct access to
GPU instructions rather than as a shader. Enables GPUs as
general-purpose parallel accelerators. Originally stands for
Compute Unified Device Architecture
• 2009 — OpenCL follows CUDA as non-proprietary variant.
• 2013 — OpenACC Official Release
• 2014 — NVIDIA Releases cuDNN for deep learning. (Date
from [11].)
• 2015 — TensorFlow Public Release
• 2016 — PyTorch Initial Release
• Currently — CUDA is dominant over OpenCL.
NVIDIA has 80% market share [3] because AMD cards are
behind the last generation NVIDIA cards and have higher
power consumption [4]. OpenCL performance is still fa-
mously bad onNVIDIA cards [25], andmost users are heavily
reliant on NVIDIA libraries like cuDNN. See practically no
OpenCL support for deep learning software in reference [8].

(Note, many dates are not easily found on the web because people
are mostly too busy releasing software to chronical its history.
Those dates were found from press releases.)

2.5 Key Architectural Differences on GPU
Despite CUDA’s similarity to C++ and the ability of modern GPUs to
execute general purpose routines, GPUs have several architectural
differences that are essential to keep in mind while programming.
GPU languages need to expose these constructs to allow the user
to write efficient code. There is a tension here in programming
language design: Making GPU programming as similar as possible
to CPU programming makes it easer for sequential programmers to
onboard, but you need to expose new constructs in order to make
those programs fast. And performance is, after all, the whole point
of using a GPU.

Here are those key architectural differences:
GPUs have hierarchically structured parallelism. Threads are

arranged into cohorts or warps, which execute together in lock-
step on a single streaming multiprocessor (SM). Workgroups for a
specific task are together called a kernel. Individual GPU threads
execute quite slowly; their speed comes from massive parallelism.

This mode of parallelism is termed SIMT (Single Instruction,
Multiple Thread) and is different and more independently parallel
than SIMD (Single Instruction Multiple Data) vector instructions
on CPU. However, it is disguising as “threads,” operations on a
streaming multiprocessor processor that are not fully independent.

Unlike on CPU, switching threads is very low cost. Execution
state for multiple cohorts is held at the same time per core, rather

than being swapped into a thread control block like onCPU. Cohorts
swap out while waiting on data.

For discrete GPUs that communicate with the CPU over PCIe,
memory bandwidth is a major constraint. GPUs do not share mem-
ory with the CPU and passing data across the PCIe bus is a signifi-
cant bottleneck. Note that this is not true in a SOC where the CPU
and GPU share the same die. As we’ll see in the results section, even
within the GPU, memory bandwidth often becomes a bottleneck
because the GPU has so much processing power.

Branching kills performance. For SIMT processors, if one thread
takes a branch, all threads must execute those instructions and
throw away the results.

Modern GPUs have caches but they’re typically only a few bytes
per thread. The caches are mostly to share data between threads
in a warp, not for longer term temporal locality like on a CPU.
Coalescing addresses from a single streaming multiprocessor also
helps reduce bandwidth usage to GPUmemory. Before these caches,
there was more reliance on manual memory management, wherein
one explicitly pinned to shared memory for temporal locality.

(Sources [2, 16, 18])

3 APPROACH
All the learning in the previous sections set us up to understand
the space of programming languages for GPUs and the underlying
architecture principles that drove them. That knowledge was good
in theory—it was time to put it into practice.

To best learn how CUDA’s parallelism models can support the
abstractions we have relied upon, we started by implementing sev-
eral versions of image convolution. Image convolution is useful for
convolutional neural networks, of course, but also for a wide variety
of other tasks, like blurring, anti-aliasing, and edge detection.

3.1 Visual Explanation of Approach
From an implementation perspective, we successfully implemented
image convolutions using four different approaches:

(1) C++ code, running on CPU, at different optimization levels
and with or without multithreading.

(2) Custom CUDA code, running on GPU.
(3) CUDA code that calls into cuDNN (NVIDIA’s Deep Neural

Network library), running on GPU.
(4) PyTorch code, running on GPU. We also explored the slow-

down from running PyTorch on CPU.

Inherently visual operations are much better explained with pic-
tures, so here goes:

Throughout this project, both in exploration and benchmarking,
we used the low-poly render of a deer (shown in Figure 9) as our
reference image, either in color or in grayscale.

We chose this image because it has visually interesting edges
to detect and amplify. It turned out that it also has what look like
interesting JPEG artifacts in the background, which our algorithms
find and visualize. The image is high resolution enough to comfort-
ably saturate our GPU’s streaming multiprocessors (1918x1078 =
2, 067, 604 kernel applications across 22 streaming multiprocessors

Exploring Hardware Parallelism’s Influence on Programming
Through Convolution in CUDA and PyTorch CS242 Autumn 2017, December 2017, Palo Alto, California USA

or 2816 CUDA cores). Using the profiler, we can see that the GPU
does indeed achieve full processor load while working on the image.

Figure 9: Our reference 1920x1080 image of a low-polygon
deer.

Again, many image effects can be modeled as the application
of a convolution kernel. By applying a specific 3x3 convolution
kernel over an image, the resulting matrix (when viewed as an
image) computes the edges of the original image, as shown in
Figure 10. We simulate this common realtime image processing or
computer vision task. Each of our four implementation strategies
can successfully compute this image convolution and dump the
resulting data. Our post-processing Python script grabs this data
and renders it as an image in the case of C++, CUDA, and cuDNN
(all of which operate on matrices, not images).

Figure 10: Edges in the original image, converted to
grayscale.

Lastly, we wanted to build a more interesting visualization to
strain the generality of each of our implementations. The goal was
to have a task that is not a natural matrix operation in order to to
understand the benefits of using CUDA’s additional flexibility over
libraries like PyTorch. We construct a composite image consisting
of the original image, where each pixel’s brightness is interpolated
between its original value and a dimmed version, weighted by the
aggregate pixel distance between itself and its neighbors, measured
according to Euclidean distance in R3 on the RGB colorspace. Es-
sentially, if a pixel is in an edge, its brightness is maintained, while
non-edge pixels are dimmed. We built both PyTorch and CUDA
implementations to handle this more complex workload, resulting
in the pretty Figure 11.

Figure 11: A complicated per-pixel function results in this
edge-saturated deer, which we think looks rather neat. The
odd apparent block pattern in the background is the result
of JPEG artifacts in the original image.

3.2 Implementation as Qualitative Results
Since our subjective experience writing these implementations is
part of the results of our experiment, we have included the details
and decisions we made in our implementation experience as the
first part of the results section. For ease of reading, the description
of our benchmarking is included with the results themselves.

4 RESULTS
Overall, we were extremely successful in achieving our goals. We
originally proposed two criteria for evaluating this project’s techni-
cal success: (1) analyzing the subjective experience of implementing
convolutions in four different frameworks and (2) benchmarking
the performance of these implementations on CPU and on GPU.

4.1 Qualitative
Subjectively, we noticed several differences in the experience of
writing normal C++ code to be run on the CPU, writing custom
CUDA coda for the GPU, calling into cuDNN, and writing a PyTorch
script.

Both of us have prior experience with PyTorch, so we began
our implementation journey there, expecting that the high-level
abstractions of the library would make writing a simple convolu-
tion kernel easy and painless. PyTorch, in contrast to the low-level
operations afforded (and required) by C++, CUDA, and cuDNN,
provides three abstraction layers for the programmer: matrix op-
erations, variables and auto-differentiation, and neural networks.
Indeed, it explicitly bills itself as both a GPU replacement for numpy
and a competitor of TensorFlow. It includes some libraries on the
side for common tasks, like multi-threaded image loading, but the
primary abstraction model is that from matrices to neural net-
works. As a result, we found that the built-in convolution operation
(torch.nn.functional.conv2d) did not accept plain torch Ten-
sors and required us to wrap the image data in a batch of size 1
and convert to a Variable, only to unwrap the batch and the Vari-
able immediately afterwards. We noticed that we were immediately
paying for the abstractions provided by PyTorch. However, one
of these abstractions was incredibly useful. In PyTorch, moving
objects to GPU in order to switch execution to use CUDA behind

CS242 Autumn 2017, December 2017, Palo Alto, California USA S. Redmond and C. Sauer.

the scenes contains just a call to .cuda() on the underlying Ten-
sor or Variable. As a result, PyTorch would allow a developer to
easily switch between CPU and GPU computations when moving
between development environments and hardware.

Writing single-threaded C++ for naive image convolution, on the
other hand, felt entirely familiar and straightforward. Although C++
forces the programmer to make decisions about stack-allocated vs.
heap-allocated arrays, manage memory, and explicitly keep track of
array bounds, with C++ we felt as though nothing mysterious was
happening. It was rather frustrating that C++ does not allow heap-
allocation of dynamically-sized 2D arrays, so we built a workaround
usingmultidimensional indexing into a 1D array. One of the primary
tradeoffs of C++ is that it gives you more control and but requires
more responsibility than higher-level languages like Python.

Translating our existing C++ to a form usable by CUDA was
perhaps themost natural portion of this project. In CUDA, C++ func-
tions are annotated with __host__, __global__, or __device__,
depending on which of the CPU and GPU can call and execute the
function. GPU functions have the strange mechanic in which the
parameters represent “global” data that all threads will need access
to, and there are “global” values threadIdx.x and others that pro-
vide information about the currently executing thread and its block.
In this way, the CUDA approach to programming feels reversed
from normal serial programming: Each thread receives global data
as parameters and has its own parameters (which determine, for
instance, which data element this thread will process) stored in a
global, non-obvious location.

Navigating and implementing convolutions in cuDNN, however,
was hugely painful. cuDNN provides opaque C-object-like API
calls with dozens of mysterious parameters, and it was only by
following an online tutorial very precisely that we were able to run
convolutional passes.

Reflecting on the experience of implementing convolutions through
these disparate approaches, we came to some broad conclusions.
The abstractions provided by PyTorch can be a powerful tool, but
is only an obvious win when the problem structure naturally fits
into the problem type assumed by PyTorch. That is, PyTorch is a
powerful hammer, and with it you have to be careful when hitting
non-nail objects. In fact, while implementing Task B, we found that
it was faster to adapt our CUDA convolution kernel function to the
complex nonlinear operation compared to adapting our PyTorch
code to solve a fundamentally non-matrix computation using ma-
trices. In both development time and runtime, we paid heavily in
PyTorch when solving Task B. The cuDNN API felt too opaque to
be immediately useful, and didn’t provide a meaningful runtime
speedup over custom CUDA kernels (in fact, cuDNN lost by over
10x!). CUDA feels more natural, provides more control, and allows
for higher developer velocity compared to cuDNN and PyTorch,
in large part because cuDNN and PyTorch seem to force you to
solve your task using their way of thinking. Furthermore, CUDA
required very little effort to transition from C++, and seems to
provide nice high-level abstractions that not only allow for GPU-
backed performance enhancements, but also stay out of the way
enough to allow the programmer to solve a broad class of problems
with standard C++ idioms and paradigms (save the odd parameter/-
global information swap described above). Once the CUDA style of

problem-solving is internalized, it’s extremely straightforward to
write parallel code.

Surprisingly, the most challenging portion of this project was not
learning new languages and frameworks, but rather setting up deal-
ing with the odd quirks of setting up the development environment,
installing CUDA/cuDNN and managing packages in C++. A few of
many examples: Installing the proper versions of nvcc (the NVIDIA
compiler) and nvprof (the NVIDIA profiler) was a real pain. CUDA
does not work with the latest macOS versions of llvm clang++, so
you have to download old versions of Xcode and switch the system
compilation over to them. This is made much more frustrating by
the error not telling you which older versions of Xcode would work.
cuDNN did not naturally play nicely with macOS headers or frame-
works, spewing thousands of compiler errors because it had doubly
defined macros in CoreServices. Most editors don’t understand .cu
file endings, even if they handle C++ just fine, so they will not
syntax highlight or autocomplete. Installing OpenCV2 and linking
against the libraries from nvcc turned into such an ordeal that we
rewrote image reading and writing utilities ourselves, which indi-
cates a design failure of the C++ package management and build
process. Finally, if the machine has been running too long before
you need to allocate GPU memory, the screen may have allocated
all the memory on the GPU, so all allocations will start failing. We
found that power cycling the screen caused these buffers to be freed.
We found ourselves longing for Rust’s excellent attention to install
scripts, package management, and build systems.

4.2 Quantitative
In order to quantitatively assess our implementations, we bench-
marked our code on two tasks. Task A consisted of convolving a
3x3 convolution kernel once over a 1920x1080 grayscale image of a
deer. Each image pixel and each kernel element was represented as
a float, and the convolution kernel was executed without padding
(that is, the result image did not contain the husk of the original
image). In Task B, we computed a complex nonlinear function for
each pixel in order to explore the weakness of using PyTorch’s
higher-level matrix operations compared to the broader class of
functions usable as CUDA kernels. In particular, for each pixel, we
computed the sum of the pythagorean distance of each of 8 neigh-
boring pixels across all channels, and used this value to interpolate
between a dimmed version of the original color and the original
color, with scaling constants controlled by tweakable parameters.

Our goal with Task A was to simply measure the cost of per-
forming a matrix convolution on various hardware with various
implementations. With Task B, we sought to challenge the PyTorch
abstraction layers by posing a complex function that could be eas-
ily implemented as a CUDA kernel but hard to write as PyTorch
operations.

In all cases (unless otherwise noted), each benchmark was run for
5,000 iterations, and the average runtime is reported. We ensured
that the profiling only captured the time to perform the convolution
and not the startup cost of image I/O and miscellaneous setup.

These benchmarks were performed on the following hardware
provided by Christopher: (CPU) Intel Core i7-6700k (4 physical
cores, 8 virtual at 4GHz); (GPU) GeForce GTX 980 Ti, with 2816

Exploring Hardware Parallelism’s Influence on Programming
Through Convolution in CUDA and PyTorch CS242 Autumn 2017, December 2017, Palo Alto, California USA

CUDA cores overclocked to 1.2GHz. Our CUDA is updated to the
latest version, and cuDNN is on 7.04.

Table 1: Performance (ms) on Task A: Convolution of 3x3
kernel on an 1920x1080 image.

Processor Type Build Configuration Runtime (ms)

CPU OpenMP Opt. Level
Off -O3 1.0878
Off -O2 1.1220
Off -O1 52.4910
Off -O0 88.5548
On -O3 6.5904
On -O2 6.7702
On -O1 16.8424
On -O0 30.2072

GPU/CUDA Threads Per Block
32 0.11264
64 0.076126
128 0.076037
256 0.076540
512 0.077442
1024 0.081313

1 GPU thread, 1 block 470.12

GPU/cuDNN
0.97269

PyTorch Running On
GPU 1.03
CPU 24.3

Table 2: CPU Performance (ms) on Task A

Build Support -O0 -O1 -O2 -O3

CPU Without OpenMP 88.5548 52.4910 1.1220 1.0878
CPU With OpenMP 30.2072 16.8424 6.7702 6.5904

Table 3: Best Performance (ms) on Task A

Build Configuration Runtime (ms)

GPU (CUDA) 0.0760
GPU (cuDNN) 0.9727
PyTorch (CUDA on GPU) 1.0300
CPU (C++, -O3, no OpenMP) 1.0878

4.3 Analysis
From a performance perspective, many of our results were consis-
tent with our hypotheses, but a few benchmark numbers surprised
us. We will explore performance relationships within each imple-
mentation strategy and across implementation strategies.

Table 4: CUDAv. PyTorchPerformance onTaskB:Nonlinear
Artistic Kernel

System Runtime (ms)

CUDA-Backed C++ on GPU 3.2706
CUDA-Backed PyTorch on GPU 24.0806

Firstly, within the CPU-only implementation of C++ convo-
lutions (see Table 2, the performance varied based on whether
OpenMP was enabled and on the optimization level selected. Recall
that OpenMP is the compiler directive that instructs the CPU to
spawn threads for each invocation of a for loop, implicitly assert-
ing that each execution of the loop is independent. With OpenMP
disabled, the performance monotonically increases as higher op-
timization flags were used. Notably, there is an enormous jump
from -O1 (about 50ms) to -O2 (about 1ms). This massive improve-
ment is due in part to the fact that -O2 enables -slp-vectorize
which allows AVX vector instructions, special instructions that
allow for superword-level parallelism by operating on 256 bits at a
time. When OpenMP is enabled, threads are spawned at the start
of the operation to parallelize the task. At -O0 and -O1, OpenMP
beat OpenMP, but at higher optimization levels, the non-OpenMP
version won. We hypothesize that this is due to the higher fixed
startup costs of thread management on a CPU, and that OpenMP
would outperform non-OpenMP even at high optimization levels
given sufficiently large inputs.

Our custom CUDA kernels, running on the GPU, blew away
the competition. When launching a CUDA kernel, the programmer
specifies the number of threads to a block (usually a multiple of 32),
and the number of blocks to launch. In general, we instruct CUDA
to launch one thread per data element, which in this case is per-
pixel. However, the memory coalescing behavior of CUDA’s access
to unified memory within a block means that memory efficiency
can depend on the size of the groups. We found a local optimum at
128 threads per group, as shown in the second section of Table 1.
Threads were allocated in row-major order across the image - our
attempts to cleverly have each thread compute an memory-optimal
pixel location (each thread group processes a square, rather than a
row) resulted in about a 50x slowdown. We also ran the convolution
using just one GPU thread responsible for all of the computations,
which was over 6,000x slower than the parallel computation, and
slower than the single-threaded CPU approaches as well (due to
the overhead of memory and the smaller cache size on a GPU core).
Furthermore, it is worth noting that nvcc defaults to -O3, so these
results are comparable with the final column of Table 2.

It is also interesting to compare this performance to the theoret-
ical maximum performance. The memory bandwidth of the bus on
our GPU processor is 336GB/s, so we can compute the minimum
possible time to read every pixel once and write every pixel once,
in a 1920x1080 image. With 2 I/O ops of 4 bytes per pixel (the size
of a float), we see a minimum time of 2·4 bytes·(1920·1080)

336·230 bytes
s

· 1000ms
1s =

0.04ms, which is only 2x faster than our CUDA implementation’s
performance. How is this possible? The GPU threads can be run-
ning almost always, due to the extremely low thread-switching
cost, while waiting for data to come in.

CS242 Autumn 2017, December 2017, Palo Alto, California USA S. Redmond and C. Sauer.

The cuDNN implementation leverages NVIDIA’s deep neural
library but pays for this power in the form of awkward abstrac-
tions. We had hypothesized that cuDNN would seriously beat any
implementation we could concoct, due to the fact that NVIDIA has
highly optimized their library. In fact, the 64 thread-per-block hand-
rolled CUDA code outperformed cuDNN by more than a factor of
10x. This indicates to us that the abstractions they impose, such
as requiring that all input matrices have descriptors set up, can
slow the overall runtime of the pipeline. Although the descriptors
form a setup abstraction, we imagine that there are similarly slow
confounding abstractions in the convolution layer.

PyTorch allows the programmer to move matrices and matrix
operations to and from CUDA at will, so we compared a PyTorch
convolution on GPU and CPU. After navigating the abstraction
boundaries between Tensors and batch Variables with some dif-
ficulty, the PyTorch GPU-backed 2D convolution beat the CPU-
backed 2D convolution by a factor of almost 24x. This is not too
surprising, given the strengths of GPUs.

Lastly, we observed drastically different performances on the
Task A benchmark across our four different implementation strate-
gies, as demonstrated in Table 3. Our basic CUDA implementa-
tion, when saturating the GPU, outperformed cuDNN, PyTorch,
and single-threaded C++ on CPU by between 12x and 15x. This is
partially due to the direct memory management and data access
performed by each thread. With plain C++ annotated to run on the
GPU, we utilize almost no implementation abstractions (save for
unified memory). As a result, the code feels messy but pays for none
of the abstraction layers imposed by cuDNN and PyTorch (both
of which are also running on the GPU). The fact that GPU-backed
C++ code trounces CPU-backed C++ code is a further indication of
the incredible computing power of GPUs.

4.3.1 Task B. On Task B (layered convolutions on an RGB image
to produce an artistic result), we were tasked with computing a
nonlinear operation for each pixel, one that is not easily transferable
to standard matrix convolutions. Therefore, using CUDA we were
able to compute all operations at once, invoking one thread per data
element (and, admittedly, asking that thread to do more work than a
simple computation). However, PyTorch operates on matrices with
built-in operations. You cannot write a Python function and have
the GPU access it, because the Python code lives at a higher level
than the executing CUDA code. Thus, the PyTorch implementation,
while shorter, consists of several matrix operations, each of which
invokes a pass using CUDA. Thus, we see that the hand-rolled
CUDA code beats the PyTorch layer by almost a factor of 8, as
shown in Table 4.

We wanted to think more about these strange interface bound-
ary constraints. What’s really driving the limitation? When calling
into CUDA from Python, you can’t call back from CUDA into cus-
tom Python functions, so any functional composition requires the
application of distinct kernels in multiple CUDA passes. On the
other hand, when everything is CUDA, the GPU can call into device
functions written by you. This allows the programmer to intelli-
gently handle memory sharing and function fusing in a way that
is impossible in PyTorch. The fact that the CUDA code beat the
PyTorch implementation confirms the cost of adopting a language
barrier between CUDA and Python.

REFERENCES
[1] 2012. A Look Back at Single-Threaded CPU Performance. (2012). http://preshing.

com/20120208/a-look-back-at-single-threaded-cpu-performance/
[2] 2013. University of Washington CSE471: GPU Architectures: A CPU Perspec-

tive. (2013). https://courses.cs.washington.edu/courses/cse471/13sp/lectures/
GPUsStudents.pdf

[3] 2017. 1 Reason NVIDIA Investors Need to Worry. (2017). https://www.fool.com/
investing/2016/12/09/1-reason-nvidia-investors-need-to-worry.aspx

[4] 2017. AMD Vega reviews, news, performance, and availability. (2017). https:
//www.pcgamesn.com/amd/amd-vega-gpu-specifications

[5] 2017. ARB Assembly Language. (2017). https://en.wikipedia.org/wiki/ARB_
assembly_language

[6] 2017. BLAS History. (2017). https://en.wikipedia.org/wiki/Basic_Linear_Algebra_
Subprograms

[7] 2017. BLAS Spec. (2017). http://www.netlib.org/blas/
[8] 2017. Comparison of Deep Learning Software. (2017). https://en.wikipedia.org/

wiki/Comparison_of_deep_learning_software
[9] 2017. CS242 Lecture 7.2: Parallelism. (2017). http://cs242.stanford.edu/assets/

slides/07.2-parallelism.pdf
[10] 2017. CUDA History. (2017). https://en.wikipedia.org/wiki/CUDA
[11] 2017. cudNN Released. (2017). https://www.infoq.com/news/2014/09/cudnn
[12] 2017. DirectX. (2017). https://en.wikipedia.org/wiki/DirectX
[13] 2017. An Even Easier Introduction to CUDA. (2017). https://devblogs.nvidia.

com/parallelforall/even-easier-introduction-cuda/
[14] 2017. GLSL Tutorial – Vertex Shader. (2017). http://www.lighthouse3d.com/

tutorials/glsl-tutorial/vertex-shader/
[15] 2017. High Level Shading Language. (2017). https://en.wikipedia.org/wiki/

High-Level_Shading_Language
[16] 2017. Inside Volta. (2017). https://devblogs.nvidia.com/parallelforall/inside-volta/
[17] 2017. Moore’s Law. (2017). https://en.wikipedia.org/wiki/Moore%27s_law#

/media/File:Moore%27s_Law_over_120_Years.png
[18] 2017. NVIDIA CUDA Programming Guide. (2017). http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html
[19] 2017. OpenACC. (2017). https://www.openacc.org/
[20] 2017. OpenCL History. (2017). https://en.wikipedia.org/wiki/OpenCL
[21] 2017. OpenGL. (2017). https://en.wikipedia.org/wiki/OpenGL
[22] 2017. OpenMP. (2017). http://www.openmp.org
[23] 2017. OpenMP History. (2017). https://en.wikipedia.org/wiki/OpenMP
[24] 2017. Pentium D History. (2017). https://en.wikipedia.org/wiki/Pentium_D
[25] 2017. Using OpenCL on GTX gives slower computation com-

pared to CPU. (2017). https://forums.khronos.org/showthread.php/
13406-Using-OpenCL-on-GTX-give-slower-computation-compared-to-CPU-why

[26] Mark Silberstein. 2014. GPUs: High-performance Accelerators for Parallel Appli-
cations: The Multicore Transformation (Ubiquity Symposium). Ubiquity 2014,
August, Article 1 (Aug. 2014), 13 pages. https://doi.org/10.1145/2618401

http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf
https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf
https://www.fool.com/investing/2016/12/09/1-reason-nvidia-investors-need-to-worry.aspx
https://www.fool.com/investing/2016/12/09/1-reason-nvidia-investors-need-to-worry.aspx
https://www.pcgamesn.com/amd/amd-vega-gpu-specifications
https://www.pcgamesn.com/amd/amd-vega-gpu-specifications
https://en.wikipedia.org/wiki/ARB_assembly_language
https://en.wikipedia.org/wiki/ARB_assembly_language
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://www.netlib.org/blas/
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
http://cs242.stanford.edu/assets/slides/07.2-parallelism.pdf
http://cs242.stanford.edu/assets/slides/07.2-parallelism.pdf
https://en.wikipedia.org/wiki/CUDA
https://www.infoq.com/news/2014/09/cudnn
https://en.wikipedia.org/wiki/DirectX
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/vertex-shader/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/vertex-shader/
https://en.wikipedia.org/wiki/High-Level_Shading_Language
https://en.wikipedia.org/wiki/High-Level_Shading_Language
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_over_120_Years.png
https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_over_120_Years.png
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.openacc.org/
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/OpenGL
http://www.openmp.org
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Pentium_D
https://forums.khronos.org/showthread.php/13406-Using-OpenCL-on-GTX-give-slower-computation-compared-to-CPU-why
https://forums.khronos.org/showthread.php/13406-Using-OpenCL-on-GTX-give-slower-computation-compared-to-CPU-why
https://doi.org/10.1145/2618401

Exploring Hardware Parallelism’s Influence on Programming
Through Convolution in CUDA and PyTorch CS242 Autumn 2017, December 2017, Palo Alto, California USA

A WORK PERFORMED
Given that our goal was to learn as much about possible about GPU architectures, CUDA, cuDNN, and PyTorch in the context of evolving
hardware constraints and programming language abstractions and decisions, we approached almost every task together. Equal work was
performed by each project member.

B ART GALLERY
While working on this project, we generated some interesting pieces of artwork when encountering bugs in our implementation. We’ve
decided to share some of the highlights (lowlights?) with you in Figure 12.

(a) Convolution of grayscale deer with random kernel. (b) Convolution of color deer with random kernel.

(c) Everything is inverted! Now with more polka dots. (d) Error reshaping C++ output, dimensions off-by-one.

Figure 12: Art Gallery

	1 Summary
	2 Background
	2.1 Project Context
	2.2 Why are GPU's Important? Moore's Law and the Rise of Parallelism
	2.3 Project Phase 1: History of GPUs, the Evolution of GPU Programming, and the Rise of General Purpose Computation on GPUs
	2.4 GPU Language Evolution Timeline
	2.5 Key Architectural Differences on GPU

	3 Approach
	3.1 Visual Explanation of Approach
	3.2 Implementation as Qualitative Results

	4 Results
	4.1 Qualitative
	4.2 Quantitative
	4.3 Analysis

	References
	A Work Performed
	B Art Gallery

