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1 SUMMARY
In this project, we compare imperative (Python) and functional
(Haskell) programming languages on solving the automated plan-
ning problems. Functional language is useful since the classical
planning problem can be reduced to boolean satisfiability problem
(SAT), where functional language and recursion provide a natural
way of implementation. On the other hand, large-scale planning
problems also suffer from the curse of dimensionality, where the ef-
ficiency of implementation plays a more important role. In this case,
we might prefer imperative language. The goal of the project is thus
to investigate the tradeoffs of functional and imperative program-
ming on planning problems of different scales. Our results show that:
(i) Recursion is a more natural way for classical planning, and thus
functional programming is preferred qualitatively for implementa-
tion. (ii) On the other hand, iterative implementation is required
for large-scale planning problem, where imperative language is pre-
ferred in terms of quantitative results. Furthermore, we explore the
use of planning heuristics to alleviate the curse of dimensionality
at scale and enable the functional language implementation to deal
with large-scale planning.

2 BACKGROUND
In this section, I discuss the relevant background to support the
motivation of the project. First, I introduce the definition of classical
planning problem and its relation to boolean satisfiability problem
(SAT). This provides background for understanding the usefulness
of functional language in this context. Next, I discuss the curse
of dimensionality in large-scale planning problem to support the
importance of efficiency.
In addition to the programming languages that implement the

planning algorithms (Python andHaskell), it is important to note that
the planning problems are also specified in programming languages.
More specifically, Planning Domain Definition Language (PDDL)
is a standard programming language for specifying the classical
planning problems. All the planning problems in this project are
defined in PDDL. We use PDDL parsers in Python and Haskell to
obtain the same set of planning problems for a fair comparison. We
then apply planning algorithms in Python and Haskell to solve the
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parsed planning problems. We thus provide a brief description of
PDDL in this section.

2.1 Classical Planning Problem
We follow the definition in [Ghallab et al. 2004]. A classical planning
problem is defined by

• s0: the initial state.
• д: the goal.
• O = {o}: the set of operators.

Each operator o ∈ O is a triple defined by:

o = (name(o),precondition(o),postcondition(o)).

When the precondition of operator o is satisfied in the current state
s , then we can apply the operator to the state, which will bring us
to a new state s ′ depending on the postcondition/effect of o. The
goal of planning is thus to find a valid sequence of operators o that
can transform the initial state s0 to a state sд that satisfy the goal д.

2.2 Planning as Satisfiability.
This discussion is mainly to connect classical planning problem to
the SATwe learned fromAssignment 5, and thus provide the context
why functional programming can be preferable for solving planning
problems. As shown in [Kautz et al. 1992], the above planning prob-
lem can be reduced to a SAT problem. The key idea is to represent
states as propositional variables the relation between two consecu-
tive states as a propositional formula. In this way, we can synthesize
a propositional formula that is satisfiable if and only if there is a plan.
From this point of view, the classical planning problem is similar
to SAT and Datalog query problem we learned from the class, both
of which we have learned that functional programming provides a
more elegant way of implementation.

2.3 Curse of Dimensionality of Planning
While the classical planning problem is general, its set of states
induce a state space that has a size that is exponential to the num-
ber of elements in the set. And the complexity can be high for
solving these larger scale problems. In this case, the efficiency is
an important aspect for the algorithm execution. While functional
programming provides a more natural way of analytically solving
the classical planning problem, imperative programming provides
more efficiency and flexibility in implementation. The goal of the
project is thus to explore the tradeoffs between the two program-
ming paradigms on varying complexities of planning problems.

2.4 Planning Domain Definition Language (PDDL)
While the main goal of the project is comparing programming lan-
guages for planning algorithms, the planning problems we are solv-
ing are themselves specified by programming language. Essentially,
PDDL provides a unified way of writing the states (used for initial
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ALGORITHM 1: Forward State Space Search - Recursive
Input: Initial state s0 and goal д
Output: Plan π achieving д from s0, or NU LL if infeasible
Heap fringe= Heapify([(Heuristic(s0), s0)]) ;
Set seen = ∅ ;
return ForwardSearch(g, fringe, seen)
function ForwardSearch (g, fringe, seen)

hs , s = fringe.heappop() ;
if s is NULL then

return NULL
else if s satisfy g then

return π (s)
else if s ∈ seen then

return ForwardSearch(g, fringe, seen)
else

seen.add(s ) ;
for s′ ∈ Successor(s ) do

if s′ < seen then
fringe.heappush((Heuristic(s′), s′))

end
end
return ForwardSearch(g, fringe, seen)

end
end

state and goal), and also the conditions in pre/post-conditions of the
operator. In PDDL, the classical planning problem is split into two
files: domain file and problem file. The domain file contains O = {o}
the set of operators, and the problem file contains the initial state
s0 and the goal д. In this case, the operators in the domain file can
be easily reused for different pairs of initial state and goal. More
details will be discussed in Section 3.2

3 APPROACH
The goal of the project is to compare imperative and functional
languages on solving classical planning problems at various scales.
This includes two components: (i) planning algorithm implemen-
tation, (ii) planning problem specification. For a fair comparison,
we need to make sure these two components are identical in both
programming languages. For the planning algorithm, we implement
the forward state space search algorithm (details in Section 3.1)
in both Python and Haskell. For the second part, we specified the
planning problems of various scales in PDDL and implement PDDL
parsers in both Python and Haskell to ensure that they are solving
the same planning problems. In addition, we discuss the quantitative
evaluation metrics and their implementation for comparing these
two programming languages.

3.1 Planning Algorithm - Forward State Space Search
We implement the forward state space search [Ghallab et al. 2004]
algorithm that serves as the backbone for many state-of-the-art
algorithms. The outline is shown in Algorithm 1. The key compo-
nent is the ForwardSearch function, which is recursively called
to continue the search. We can see how functional language can
be a natural way for its implementation. In addition, the Succes-
sor function check the applicable operators and apply the operator

to the current state to get the successors. This function is similar
to the new_facts_for_rule of DataLog in Assignment 5, and we
have learned from Assignment 5 that functional programming is
also helpful for implementing it. Examples of my implementation
of forward state space search in both Python and Haskell will be
shown in Section 4 for qualitative discussion of implementing with
both languages.
Another important function to note is the Heuristic() function,

which is where state-of-the-art planning algorithms improve upon
this backbone searching algorithm. The baseline heuristic in our
main results is uniform (same for all states s), which provides no
preference on the order of the state to continue the search. On the
other hand, if we have a good heuristic that can estimate how close a
state s is to the goal д, then we can prioritize them withHeuristic()
in the heap, and therefore achieve better planning efficiency. We
explore the use of heuristics to improve the efficiency of functional
language in Section 5.

3.2 Planning Problem - Blocks World
Another important aspect of this project is to provide identical
planning problems at various scales to compare the performance
of functional and imperative language. Without enough scale of
the problem, it is hard to really understand the requirement for
efficiency. More specifically, we select the BlocksWorld planning
problem that has been widely used as an example for automated
planning [Russell et al. 1995]. The goal of BlocksWorld is to pick-
and-place the blocks on each other or on the table to achieve the
desired configuration. In addition, one property of BlocksWorld that
is important to the project is that the size of its state space grows
exponentially with respect to the number of blocks. This allows us
to generate large-scale planning problems suffering the curse of
dimensionality to compare the programming languages.
For implementation, we use Planning Domain Definition Lan-

guage (PDDL) to specify the BlocksWorld problems ranging from 3
blocks to 9 blocks generated automatically using the Haskell source
code of the Hierarchical PDDL work [Alford et al. 2009]. As men-
tioned in Section 2.4, the PDDL specification of planning problem
is separated into two files: domain file and problem file. Here is an
example of part of the blocks world PDDL domain file:

(define (domain blocks)
(:requirements :strips :disjunctive-preconditions)
(:types BLOCK)
(:predicates

(hand-empty)
(clear ?b - BLOCK)
(holding ?b - BLOCK)
(on ?top - BLOCK ?bottom - BLOCK)
(on-table ?b - BLOCK))

(:action putdown
:parameters (?b - BLOCK)
:precondition (holding ?b)
:effect (and

(hand-empty) (not (holding ?b))
(on-table ?b) (clear ?b)))
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It can be seen that it specifies the actions/operators that are reusable
for all our BlocksWorld planning problem, and this file is thus shared
across all the planning problems we use in this project.

On the other hand, the problem file specifies the initial state and
goal specific to the planning problem. Example of blocks world
PDDL problem file with 2 blocks:
(define
(problem pfile_2)
(:domain blocks)
(:objects b1 b2 - BLOCK)
(:init (hand-empty) (clear b2) (on-table b1) (on b2 b1))
(:goal (and (clear b2) (on-table b1) (on b2 b1))))

We use PDDL parser in both Python and Haskell to ensure that
they are solving the same set of planning problems for a fair com-
parison.

3.3 Starter Codes
The main starter codes I used are for the PDDL parser.

• Python: I used the pddl-lib https://pypi.python.org/pypi/pddlpy/
0.1.9 in Python to parse the PDDL planning domain and prob-
lem. However, their parsed objects are not directly compara-
ble for me to apply the forward state space search algorithm,
so I implemented a wrapper to transform their results to
a graph that is feasible for forward state space search and
comparison to the Haskell implementation.

• Haskell: The closest I can find to a PDDL parser in Haskell is
the huff package https://hackage.haskell.org/package/huff-0.
1.0.1 where they parse a PDDL-like script in part of the code.
As their PDDL-like language is equivalent to PDDL for the
BlocksWorld, I implemented a translator from PDDL to their
PDDL-like script in Python so the huff package in Haskell
can parse the same planning problem as the ones in Python.

For the backbone of planning algorithm implementation I used
the following reference code, but have to rewrite the core planning
algorithm part for comparing Haskell and Python:

• Python: I referred to https://github.com/garydoranjr/pyddl
when implementing the iterative version of the forward state
space search algorithm (more details in Section 4.3). For the
recursive version, I just implement Algorithm 1 on the output
of pddl-lib.

• Haskell: The huff package already includes its own planner
(with Fast-Forward Algorithm). However, as it is not the
same and not comparable to the forward state space search
in Python, I rewrote the core part of the planning algorithm,
while using the code outline of the huff package.

As mentioned in Section 3.2, I used the source code of the Hierar-
chical PDDL work [Alford et al. 2009] (https://github.com/ronwalf/
HTN-Translation) to generate the BlocksWorld problems of differ-
ent number of blocks.

4 RESULTS
Our goal is to compare imperative and functional language on the
forward state space search algorithm at different scales. While we
have seen that the functional programming language provides a

Fig. 1. Runtime and memory usage comparison of Python and Haskell re-
cursion forward state space search algorithm. Python cannot finish planning
problem beyond 6 blocks because of stack overflow, and Haskell cannot
finish 9 blocks problem due to too long runtime.

more natural way to implement the algorithm, we want to see what
is the tradeoffs we have at large scale. We observe as expected that
Haskell is a better option for the recursive implementation both
quantitatively and qualitatively. However, iterative search actually
has a better performance at large-scale, and imperative program-
ming with the program state is easier for iterative search implemen-
tation.

4.1 Evaluation Metrics
For quantitative comparison of the programming languages, we use
two metrics: (i) runtime and (ii) memory usage. Both of which are
standard metrics that we can get by profiling tools. More specifically,
we use memory_profiler for Python and RTS option for Haskell
for profiling. We did not use lines of code for quantitative compar-
ison. Instead, we provide qualitative discussion on the languages.
In addition, as we will see in Section 4.2, Python and Haskell treat
recursion very differently at scale.

4.2 Comparing Recursive Foward Search
Now we compare quantitatively the implementation of Forward
State Space Search in Algorithm 1 in Python and Haskell. The mem-
ory usage and runtime comparison are shown in Figure 1. The
horizontal axis is the number of blocks and the vertical axis is in
log-scale. It can be seen that the two have similar memory usage,
but Python is more efficient when the number of blocks is small.
However, it is important to note that the Python implementation
cannot deal with more than 6 blocks because the required levels of
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Fig. 2. Number of visited states and the levels of recursion required to
find the plan for different numbers of blocks with uniform forward state
space search. We can see that there indeed exists the challenge of curse of
dimensionality.

recursion will lead to stack overflow. It is interesting to find that
Python doesn’t optimize tail recursion, and unbridled recursion
causes stack overflows easily. Note that I already altered the system
recursion limit of Python to enable results of 5 and 6 blocks. In
addition, the Haskell implementation also fails to complete the 9
blocks problem (taking too long). We can see that both the runtime
and the memory usage for both languages follow the exponential
growth. The shows that curse of dimensionality indeed exists for the
BlocksWorld planning problem. We further verify this by showing
the number of visited states and recursion levels required to find
the plan in Figure 2. With 5 blocks, the levels of recursion already
exceed the default recursion limit value (1000) in Python.
Based on the results in this section, we can see that Haskell is

indeed much better for recursive implementation, while Python is
not really designed to handle large-scale recursion. On the other
hand, Python recursion offers slightly better efficiency when the
levels of recursion do not lead to stack overflow.

Overall, using Forward State Space Search with uniform heuristic
function, we can see that both of the functional and imperative
languages suffer from the curse of dimensionality and cannot even
finish running all of the planning problems. Although we do see that
functional programming is a better fit for recursive implementation.
Next, we explore ways of improving the efficiency at large-scale
to overcome the curse of dimensionality in both the imperative
language and the functional language

4.3 Improving Imperative Language with Iterative Search
One important observation about the forward state space search
in Algorithm 1 is that it is not required to be implemented recur-
sively. While recursion is a more intuitive way of implementing this
algorithm, we can also implement it iteratively. The pseudo-code is
shown in Algorithm 2. While the main body of the algorithm is the
same as the recursive search, we replace the recursion with a while
True iteration that updates the state of the heap “fringe” and the
set of seen states. In this case, it is not required to use recursion in
imperative language, which Python is not really optimized for.

The memory usage and runtime comparing to the recursive imple-
mentation of Python and Haskell are shown in Figure 3. We can see

ALGORITHM 2: Forward State Space Search - Iterative
Input: Initial state s0 and goal д
Output: Plan π achieving д from s0, or NU LL if infeasible
Heap fringe= Heapify([(Heuristic(s0), s0)]) ;
Set seen = ∅ ;
while True do

hs , s = fringe.heappop() ;
if s is NULL then

return NULL
end
if s satisfy g then

return π (s)
end
if s < seen then

seen.add(s ) ;
for s′ ∈ Successor(s ) do

if s′ < seen then
fringe.heappush((Heuristic(s′), s′))

end
end

end
end

that this significantly improve both the runtime and the memory us-
age compared to both recursive implementations. More importantly,
now the planner is able to finish the 9 blocks planning problem. On
the other hand, one interesting observation is that the recursive im-
plementation in Haskell actually has good performance on memory
usage and is comparable to the iterative search in Python. This is
in contrast to recursive implementation in Python, which can only
deal with 6 blocks, and uses more memory compared to iterative
implementation.
It is important to note that it is less straightforward to imple-

ment iterative search in Haskell and functional language in general.
The iterative forward state space search requires the program to
maintain the “state” of the heap “fringe” and the set of seen states,
and continue to update the state of the program for each iteration.
On the other hand, functional language like Haskell is naturally
stateless, and the while True operation is harder to implement. Ac-
tually one way of implementing the while loop in Haskell is through
recursion1. However, this defeats our purpose of avoiding recursion
to deal with large-scale planning problem.

4.4 Qualitative Comparison
We provide additional qualitative discussion on implementing re-
cursive forward state space search algorithm in Python and Haskell.
The Python implementation of ForwardSearch is essentially the
same as the one in Algorithm 1. On the other hand, Haskell allows
the implementation to be more concise. First, we are able to use
pattern matching to easily consider all the possible cases of s popped
out from the heap to simplify the recursion implementation. Sec-
ond, the most complicated case, where we have to check all the
successors s ′ of the state s can be more easily written as:
ForwardSearch g (HS.insert s seen)

1https://stackoverflow.com/questions/17719620/while-loop-in-haskell-with-a-condition
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Fig. 3. Runtime and memory usage comparison of iterative forward search
in Python. Iterative search significantly improve the performance of Python.
Note that iterative implementation is not really appliable to Haskell.

(foldr Heap.insert fringe unseen_successors)

5 EXPLORING EFFECT OF PLANNING HEURISTICS
We have shown that iterative forward search can improve the perfor-
mance of imperative language at large-scale. Now we explore other
approaches for improving the performance at scale. As discussed
in Section 3.1, designing stronger heuristic can improve the perfor-
mance of forward state space search algorithm. We thus explore
the effect of adding in the Relaxed Graphplan heuristic [Hoffmann
and Nebel 2001] to our forward state space search algorithm. Given
a state s , the Relaxed Graphplan heuristic uses a procedure simi-
lar to the original forward state space search, but when applying
the operators to the states, it does not apply the negative effect. In
this case, the Relaxed Graphplan is guaranteed to reach the goal in
polynomial time to serve as a good heuristic.

The runtime of adding in the Relaxed Graphplan heuristic to our
Haskell implementation of recursive forward state space search
is shown in Figure 4. It can be seen that this allow the Haskell
implementation to have a closer performance to the Python im-
plementation. Note that we used existing Relaxed Graphplan im-
plementation in Haskell for this part, and did not implement the
Relaxed Graphplan heuristic in Python.

6 CONCLUSION
We have compared functional (Haskell) and imperative (Python)
programming languages on solving the classical planning problems.
We showed that functional programming is better for implement-
ing the recursive search algorithm that naturally represents the

Fig. 4. Runtime comparison of different forward state space search im-
plementation. The iterative search in Python (Python-Iter) has the best
performance. Haskell implementation with Relaxed Graphplan Heuristic
(Haskell-Heu) also achieved comparable performance with recursive search
at large-scale

planning problem. However, for the large-scale planning problems
that suffer the curse of dimensionality, iterative implementation by
imperative language has better performance. Finally, we explore the
use of Relaxed Graphplan heuristic in the recursive forward state
space search algorithm and show that it is able to have comparable
performance with the iterative search implementation in Python.

7 WORK DISTRIBUTION
I am the only one on the project, so I did all the work.
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