
Rivet: Dependency Injection in Rust
CS242 Final Report

Michael Diamond
diamondm@stanford.edu

Matthew Vilim
mvilim@stanford.edu

1 SUMMARY
Rust’s strict compile-time semantics make approaches that are of-
ten straightforward in other modern languages significantly more
difficult or less intuitive. Rust’s concepts of ownership and data life-
times, along with its limited runtime reflection support constrain
users hoping to design loosely coupled and pluggable applications.
We explored various approaches to the strategy pattern[7] and
dependency injection[6] (DI) in Rust, providing a qualitative evalu-
ation of each, discussing their strengths and weaknesses. We rank
each approach explored in terms or several metrics: safety, expres-
siveness, flexibility, maintainability, and debugability. We created
a pluggable web server framework, called Rivet[8], as a testbed to
explore and demonstrate these different approaches, and identified
several promising strategies and areas for future research.

2 BACKGROUND
As software applications grow in size, tightly-coupled dependen-
cies between conceptually isolated components introduce cognitive
overhead and unnecessary complexity, forcing developers to un-
derstand large swaths of the application in order to safely make
further changes to any part of the system.

The strategy pattern is a useful tool for combating tight coupling;
by registering distinct components with a centralized dispatcher
each component can be developed in isolation. The dispatcher takes
responsibility for application-wide tasks such as managing resource
contention, but routes units of work to the appropriate strategy for
processing. This allows the dispatcher to remain decoupled from
the actual work that needs to be done, and the individual strategies
do not require any awareness of each other.

However, this pattern introduces two significant issues. First, it
requires all strategies implement the same API(s) in order for the
dispatcher to be able to invoke them (e.g. Java’s Runnable interface),
which constrains the flexibility of the plugin’s APIs and often re-
quires the use of a monolithic “StrategyContext” type that contains
any information a strategy might possibly need. Second, it doesn’t
resolve the issue of tight-coupling in the form of global state. Any
data or resources not provided by the dispatcher generally can only
be retrieved from the application’s global state. This leads to brittle,
difficult to test code that cannot be decoupled from the application’s
full behavior.

Dependency injection is a technique widely employed to address
both of these concerns. At a high level dependency injection is
a type of inversion of control (IoC) — application code is given
the resources and data it depends on, rather than constructing or
owning it directly.

A simple example of code not using dependency injection is
shown in Listing 1. A corresponding implementation using DI is
shown in Figure 2.

Listing 1: Dependency is tightly-coupled to its usage
class DatabaseUpdater () {

private final Database db =
new Database(USERNAME , PASSWORD);

public updateDatabase (...) { db.write (...); }
}

Listing 2: Loosely-coupled, dependencies are passed in
class DatabaseUpdater () {

private final Database db;

public DatabaseUpdater(Database db) { this.db = db; }

public updateDatabase (...) { db.write (...); }
}

Decoupling resource construction from where it’s used makes
DatabaseUpdater simpler to work with, but it has only offloaded the
task of actually constructing the Database to some other part of the
application. Manually constructing all necessary dependencies and
passing them in is possible but can quickly become tedious and
error-prone. In order to address this issue, dependency injection
frameworks exist to support recursive dependency resolution. The
dependency “factory” knows how to generate an object and all its
dependencies, limiting the dependency construction information
to single place far away from where the dependencies will be used.

2.1 Webservers
Developing a web server (or any sort of RPC server) is a classic
use case for a strategy pattern as it enables developers to separate
the role of the server framework (receiving requests and sending
responses) from how those individual requests are handled. Individ-
ual request paths (e.g. /foo.html and /bar?baz=true) can be processed
by entirely isolated units of code, which have no knowledge of each
other or any other paths that the server is able to handle. These
requests may also be structurally different and require different
dependencies in order to be properly completed; therefore, a flexible
dependency injection pattern allows individual strategies to work
with just the dependencies they need.

Many modern open source web frameworks take this approach1,
including Python’s Django and web.py projects, which allow in-
dividual plugins to separately specify the data they require from
the request, rather than conforming to a single (or finite) API. For
example, web.py allows arbitrary URL “chunks” to be passed as
arguments to a plugin’s handler function.

There are also several existing web frameworks for Rust[9] (in
different stages of development), notably including Rocket[5] which

1Contrast this with languages like PHP which take a one-script-per-page approach,
or lower-level tools that simply accept requests and return responses, without any
meaningful dispatching, decoupling, or type-safety.

CS 242, Fall 2017, Stanford University Michael Diamond and Matthew Vilim

we investigated as it implements an elegant strategy and depen-
dency injection pattern.

2.2 Prior Art
Several dependency injection approaches have already been cre-
ated for Rust [4] [1] [2], however these projects all appear to be
experimental with varying robustness. To our knowledge there is
not a general-purpose DI library developers can incorproate into
their applications today.

• rust-ioc This project provides a factory container with sup-
port for resolving a dependency graph at compile time; this
crate is the most well-maintained and documented. A full
summary of its features is available at https://github.com/
KodrAus/rust-ioc/blob/master/README.md.

• di-rs This repository provides DI with a slight twist inspired
by a JavaScript framework[3]; it supports restricted lifetimes
with scoping as discussed in Section 3.6 and provides multi-
threaded support.

• hypospray This project looked the most promising in terms
of features and expressibility and is the only of the three to
use code generation; however, the project is broken2 and
no longer seems to be maintained. Dependency graphs are
checked at compile time, and it supports injecting up to five
dependencies at a time3.

Rocket is notable also as it provides a generic plugin mechanism
that relies on code generation to automatically create the coupling
between the user’s decoupled components. Rocket also provides
a DI factory API they call Managed State4, an example of which
is shown in Listing 3. This example indicates the decoupling that
Rocket’s code generation provides; the index and count functions are
injected with a user-defined structure HitCount, receiving only the
data they need to complete the request.

Listing 3: Example of Rocket’sManaged State interface
struct HitCount(AtomicUsize);

#[get ("/")]
fn index(hit_count: State <HitCount >) -> &'static str {

hit_count .0. fetch_add(1, Ordering :: Relaxed);
"Your visit has been recorded !"

}

#[get("/ count ")]
fn count(hit_count: State <HitCount >) -> String {

hit_count .0. load(Ordering :: Relaxed). to_string ()
}

fn main() {
rocket :: ignite ()

.mount ("/", routes ![index , count])

.manage(HitCount(AtomicUsize ::new (0)))

.launch ()
}

As a concrete example of where Rust developers might need
Dependency Injection, Rocket’s lead developer Sergio Benitez di-
rected us to an open issue5 tracking implementing some sort of
solution for dependencies which require configuration (such as

2https://github.com/jonysy/hypospray/issues/3
3https://github.com/jonysy/hypospray/blob/2de8cb698/src/graph/ext.rs#L130
4https://rocket.rs/guide/state/
5https://github.com/SergioBenitez/Rocket/issues/167

database connections). Presently in Rust and Rocket the experience
here is fairly poor because existing approaches rely heavily on code
generation, which means in order to reconfigure such resources
(e.g. update the database connection information) the application
must be recompiled. At this time this remains an open feature re-
quest for Rocket, but the specified behavior boils down to runtime
dependency injection using data that is not known at compile time.

3 APPROACH
Using the tiny-http[10] Rust HTTP library as a starting point we
implemented a server meta-framework that allowed us to explore
different strategy patterns and dependency injection mechanisms.
tiny-http represents each HTTP request and response via a pair of
structs appropriately named Request and Response. These encapsulate
everything the server developer might need to inspect or mutate,
but they’re fairly difficult to work with in practice unless all valid
requests are homogeneous (e.g. serving static content from disk,
based solely on the URL). Heterogeneous request handling (e.g.
different “sections” of a website serving separate types of content)
calls for a more elegant decoupling.

We defined a simple Responder trait, shown in Listing 4, which our
different approaches would implement, in order to first decouple
the server’s low-level request processing from the approaches that
would handle individual requests.

Listing 4: The meta-framework’s Responder trait
use tiny_http ::{ Request , ResponseBox };

pub trait Responder {
fn handle (& self , &Request) -> ResponseBox;

}

A simple routing mechanism, keyed off the first /-delimited
segment of the requested URL, was used to dispatch requests to
individual responders. These responders, in turn, exposed some
different (and ideally better) API than the Request and Response structs
for handling the requests routed to them.

For the sake of simplicity, our examples primarily looked at ways
of providing the URL’s path and query parameters more cleanly.
Our approaches could be expanded to any other request/response
data (HTTP method, hostname, cookies, headers, etc.) or other
dependencies (such as database hooks) by simply replicating what
was done for the path and query data. Where that isn’t the case is
called out below as a disadvantage.

3.1 Qualitative Metrics
Fundamentally our investigation is subjective — which approaches
make for a better development experience than simply processing
raw requests, while also working within Rust’s constraints and
following its best practices.

In order to be somewhat qualitative and offer a more meaningful
result than simply “better” or “worse” we identified five axes on
which our approaches will be compared. In some cases these axes
are at odds with each other — for example an API that offers greater
flexibility will generally sacrifice safety or maintainability in order
to do so.

https://github.com/KodrAus/rust-ioc/blob/master/README.md
https://github.com/KodrAus/rust-ioc/blob/master/README.md
https://github.com/jonysy/hypospray/blob/2de8cb698/src/graph/ext.rs#L130

Rivet: Dependency Injection in Rust CS 242, Fall 2017, Stanford University

• SafetyHow error-prone is the approach? (e.g whether issues
cause compile-time failures or runtime failures, or introduce
overhead such as suboptimal memory lifecycles)

• Expressiveness How easy is it to work within the frame-
work? (e.g. minimal boilerplate or linguistic constraints)

• Flexibility How easy is it to add new dependencies with
minimal change? Are there constraints on the types of de-
pendencies or their lifetimes?

• Maintainability The ability to make changes to certain
code paths without fear of affecting other paths

• Debug-ability Being able to clearly diagnose failures and
their root causes

A summary of our results in terms of these axes is depicted in
Table 1.

3.2 Simplified
Our first step was to simply hide the Request object, as it’s much
larger and more cumbersome than many applications need. For
simple use-cases it could be sufficient to simply pull out the basic
information the developer needs and provide it to them via a more
expressive API — specifically:

Listing 5: A simpler API
fn respond(url_parts: &Vec <String >,

query_params: &HashMap <String , String >) -> String

Hiding the Request and Response types like this gives the user a
smaller API surface — they don’t have to worry about the HTTP
specification or other complexities of a general-purpose server.
Instead, they simply process the URL and generate a string to send
as the response, which the framework then converts into a proper
HTTP response.

However, it offers little type-safety beyond what Request already
provided, and notably is a far more severely rigid API. There’s
no mechanism to expose additional data or dependencies (such
as the request cookies) short of redefining the function’s API. In
addition to being inflexible, it provides no way for the user to
compartmentalize different request types and requires the user to
write boilerplate (such as an if-else chain) to handle different request
types separately, leading to difficult to maintain and overly-verbose
code. Any sort of URL parsing (e.g. extracting a numeric identifier
from the path) must be done manually, which is both tedious and
error-prone.

While broadly unsuitable, this example demonstrates the general
principle of hiding the HTTP layer from the user, and there are
low-hanging-fruit to resolve some of the concerns above.

3.3 Pattern
The first improvement is to make request routing a feature of
the framework, rather than something the user is responsible for.
To do so, we created a registry of regular expressions matching
different URL patterns and paired this with a callback function
fn(®ex::Captures, &HashMap<String, String>) -> Stringwhichwould
be invoked if the request URL matched the given pattern.

Listing 6: Using patterns to route heterogenous requests
lazy_static! {

// Note that the order matters -
// the first matched pattern will be used
static ref ROUTES: Vec <Route > = vec![

Route::new("/foo /([^/]*)" , handle_foo),
Route::new("/bar /(\\d+)", handle_bar),
Route::new("", handle_root)

];
}

struct Route {
path: regex::Regex ,
callback: fn(®ex::Captures , &HashMap <String , String >)

-> String
}

fn handle_foo(path_captures: ®ex::Captures ,
query_params: &HashMap <String , String >) -> String {

format !(" Captures: {:?}\ nQuery Params: {:?}",
url_captures , url_params)

}

While this has a type signature similar to the “Simplified” ap-
proach, it’s far more expressive and maintainable, as users can spec-
ify arbitrary segmenting of the request space to be sent to different
callbacks. These callbacks do not need to be aware of one another
or interact in any way, making ongoing maintenance much simpler
and safer. Furthermore, by decoupling request routing from the
request handling functions users have some flexibility in how their
code is invoked. While adding additional dependencies to this call-
back API is non-trivial — every callback function would need to be
updated with an additional parameter — specifying a closure as the
callback function (e.g. |captures, _params| simple_handler(captures))
allows the simple_handler function to only specify the data it actually
requires, not the whole request.

Similarly, using capturing groups of a regular expression rather
than the raw URL path gives the developer more confidence that
the requests they’re handling are well-formed and can be safely pro-
cessed. For instance, the handle_bar handler above can be confident
that it will always be invoked with a capture parameter containing
exactly one group consisting of digits. This could be made even
more type-safe and expressive with a higher-level pattern matching
abstraction that validates and parses the captured inputs into the
desired types before invoking the user’s callback.

By routing requests and validating them before invoking the
user’s callback, the framework is easier to debug as well. While
users are still responsible for some amount of input processing, the
majority is handled by the framework, and runtime errors (such
as failing to parse an invalid input that makes it past the regular
expression) can be handled with standard Rust idioms such as
match’ing the parse results.

3.4 Closure
From here we clearly needed to investigate more flexible options —
dependency injection. We started by looking at an existing pattern6
implemented by rust-ioc (the “ioc” referring to “inversion of con-
trol”), which they achieve by using closures to separate resource
construction from invocation. Conceptually, their pattern is a form
of partial application; associating a resource with a stateful type
that then accepts the data the resource should operate on. It also
6https://github.com/KodrAus/rust-ioc/blob/master/factories

https://github.com/KodrAus/rust-ioc/blob/master/factories

CS 242, Fall 2017, Stanford University Michael Diamond and Matthew Vilim

Table 1: Qualitative comparison of differing mechanisms investigated

Approach Safety Expressiveness Flexibility Maintainability Debugability

Simplified low low none low moderate
Pattern moderate moderate → high low high high
Closure high low→ moderate moderate high moderate
Factory moderate low low moderate low
Scope high low low moderate low
Traits high high moderate high low→ moderate

takes advantage of the impl Trait7 syntax, which we did not explore
here.

By emulating this approach we can similarly decouple the user’s
function(s) from the callback API used by the framework itself:

Listing 7: Passing dependencies via closures
fn handle (&self , request: &Request) -> ResponseBox {

let path = ...;
let query = ...;

let cb: Box <Fn() -> ResponseBox > = match path.first() {
Some(part) => match part.as_ref () {

"path" => Box::new(
|| util:: success (& params_only(path))),

"query" => Box::new(
|| util:: success (& query_only(query))),

"both" => Box::new(
|| util:: success (&both(path , query))),

_ => Box::new(|| util:: fail404 ("Not found !"))
},
None => Box::new(|| util:: success (&root ()))

};

// framework invokes the callback later
cb()

}

fn params_only(params: &Vec <String >) -> String { ... }

fn query_only(query: &HashMap <String , String >)
-> String { ... }

The handle function is responsible for pulling out any data or
other resources from the request, then dispatching8 the request to
the appropriate callback. With this technique we’re able to use a
single simple callback signature (taking no explicit arguments) but
pass in whatever parameters the user expects by closing over them.
This is far more flexible than our prior approaches. Not only can
the user cleanly define whatever function signature(s) they’d like to
use, but furthermore, there are no changes required to the existing
functions if additional data is made available in the future.

The benefit of using closures (vs. just directly invoking the user’s
functions) is the inversion of control demonstrated in the rust-ioc
project. The framework gets a cb callback it can invoke when it’s
ready to do so, without concern for which dependencies the user’s
code requires.

In this implementation the dense closure boilerplate somewhat
impacts the expressiveness of the approach, but this block could
conceptually be generated by a script, macro, codegen, or other

7https://github.com/rust-lang/rfcs/blob/master/text/1522-conservative-impl-trait.md
8for brevity here we simpy routed requests based on the first segment of the URL path,
but a proper implementation could take advantage of the more powerful pattern-based
dispatching described above.

tool, as each line takes the same form based on the arguments of
the function being called. Instead of manually listing all matches in
one place each function could be annotated with the path or pattern
it’s intended to be invoked with, and the handle function would be
generated based on the annotation and function parameters.

This approach would come with some tradeoffs, notably if the
dispatching logic is being generated, it will be difficult for users
to trace. Additionally, it could constrain what types could be dy-
namically injected, since the code inspection would need to be able
to determine which instances should be injected based solely on
the function signature. If two values with the same type needed
to be injected, some more cumbersome mechanism to differentiate
them would need to be introduced, which would both complicate
the user experience and potentially lead to confusing debugging
experiences.

Despite these issues, this closure-based approach shows general
promise as a way to work within Rust’s constraints while enabling
dynamic and flexible user-facing APIs.

3.5 Factory
This method of DI works as described above by providing a single
location where all dependencies are defined — essentially associat-
ing instances with a unique key they can later be retrieved with. A
dependency can be added with the add function by tagging it with
a unique string; to resolve the dependencies, the same string can
be provided to resolve to construct a new instance of that object.
The definition of the container is shown in Listing 8; internally,
dependencies are tracked in a HashMap<String, Box<Any>> and down-
cast at resolution time. Shared dependencies can be stored in the
map as Rc<_>, and even mutable shared references can be stored
as Rc<RefCell<_>> using Rust’s concept of interior mutability and
runtime borrowing.

Rivet: Dependency Injection in Rust CS 242, Fall 2017, Stanford University

Listing 8: Factory container definition
struct Container {

constructors: HashMap <String , Box <Any >>,
}

impl Container {
fn new() -> Container {

Container { constructors: HashMap ::new() }}

fn add <T: Constructors <T> + 'static >
(&mut self , s: &str , value: T) {

self.constructors.insert(s.to_string(),
Box::new(value.construct ()) as Box <Any >);

}

fn resolve <T: Clone + 'static >(&self , s: &str) -> T {
let item = self.constructors.get(s). unwrap ();
let construct =

item.downcast_ref ::<Construct <T>>(). unwrap ();
construct.c()

}
}

The actual construction itself takes place through the following
traits shown in Listing 9. An example of usage within a web server
plugin in shown in Listing 10. While this approach does provide a
DI factory scheme, it suffers from a number of problems:

• All dependencies registered in the map must implement the
Clone trait. This limitation is a result of the fact that at the
time of dependency creation, the constructor is unknown.
Thus, dependencies are required to provide a method of
duplication. In the case of shared dependencies using Rc<_>,
this Clone serves simply to increment the reference count. An
alternate DI scheme that instantiates dependencies on the
fly through provided constructors is explored in Section 3.6.

• Dependency lifetimes are static and will last as long as the
factory container exists. The brittle nature of dependency
declarations in this scheme entails that dependencies’ life-
times are not simply limited to their natural lifetimes. Amore
ideal solution would tie dependency lifetimes to a scope as-
sociated with that of their parents as explored in 3.6.

• This method also suffers from runtime safety issues. The
user must explicitly annotate the type of the dependency to
be resolved as shown in Listing 10. An error by the user in
specifying the type to be retrieved would result in a run-time
error.

• There is also a fair amount of boilerplate involved in wiring
dependencies as shown in the example; reducing boilerplate
would require code generation or macros.

• As the dependency graph grows, the origin of runtime fail-
ures discussed above become difficult to pinpoint.

Listing 9: Factory constructor traits
struct Construct <'a, T> { build: Box <Builder <T> + 'a> }

impl <'a, T> Construct <'a, T> {
fn c(&self) -> T { self.build.c() }

}

trait Builder <T> { fn c(&self) -> T; }

impl <T: Clone > Builder <T> for T {
fn c(&self) -> T { self.clone() }

}

Listing 10: Factory usage in plugin
pub struct Factory { container: Container }

impl responders :: Responder for Factory {
fn new() -> Factory {

let mut c = Container ::new();
let count = Rc::new(RefCell ::new (0));
c.add("count", count);
Factory { container: c }

}

fn handle (&mut self , request: &tiny_http :: Request)
-> tiny_http :: ResponseBox {

let url_parts =
util:: strip_url_prefix(request.url(), "/ factory ");

self.container.add(" url_parts", url_parts);
let count: Rc<RefCell <i32 >> =

self.container.resolve ("count ");
*count.borrow_mut () += 1;
util:: success (& format !(" Count {:?}", count))

}
}

3.6 Scope
One of the principle shortcomings of the method discussed in Sec-
tion 3.5 is the inability to tie dependent objects’ lifetimes to that
of their parents. The following method based on [1] solves this
issue by providing a way to scope object lifetimes. The method is
based on a slightly altered method of DI described by the author of
[1] [3]. Rather than pulling dependencies from a factory container,
the entire dependency tree is constructed on demand and tied to
the parent. The Scope<T> struct shown in Listing 11 is used to hold
an object and all of its constructed dependencies. The Dependencies

struct in Listing 12 maintains a HashMap mapping each dependency
tagged by the user with a unique string to a set of closures that
are constructors for its dependent objects. When a dependency is
resolved by calling resolve, each constructor is called, and the depen-
dent objects are returned. These closures themselves may contain
calls to resolve dependencies. The dependency graph is defined by
calling add, providing the constructor for that dependency.

Listing 11: Dependency scoping
pub struct Scope <T> {

pub parent: T,
children: Vec <Box <Any >>,

}

pub trait Resolve <T> {
fn resolve(self , s: &str , deps: &Dependencies)

-> Scope <T>;
}

impl <T: Any > Resolve <T> for T {
fn resolve(self , s: &str , deps: &Dependencies)

-> Scope <T> {
deps.run_constructors(s, self)

}
}

This method does provide advantages in limiting the lifetimes
of dependent objects in comparison to the factory container, but
it also has drawbacks of its own. Due to the fixed nature of the
closure function signature, constructed objects can only be injected
with at most one dependency. This restriction is severely limiting in
cases where an object may depend on more than one object. Later

CS 242, Fall 2017, Stanford University Michael Diamond and Matthew Vilim

Listing 12: Scoped dependency resolution and construction
pub struct Dependencies { constructors: HashMap <String , Vec <Box <Fn(& Dependencies , &Any) -> Box <Any >>>> }

impl Dependencies {
pub fn new() -> Dependencies { Dependencies { constructors: HashMap ::new() }}

pub fn run_constructors <P: Any >(&self , s: &str , parent: P) -> Scope <P> {
match self.constructors.get(s) {

Some(list) => {
let deps: Vec <_> = list.iter() .map(| construct| construct (&self , &parent)) .collect ();
Scope { parent: parent , children: deps }

},
None => Scope { parent: parent , children: vec![] },

}}

pub fn add <P, C, F>(&mut self , s: &str , constructor: F)
where P: 'static + Any , C: 'static + Any , F: for <'r> Fn(&'r Dependencies , &P) -> C + 'static {
match self.constructors.entry(s.to_string ()) {

Entry:: Occupied(mut list) => { list.get_mut (). push(box_constructor(constructor)); },
Entry:: Vacant(e) => { e.insert(vec![box_constructor(constructor)]); },

};}
}

fn box_constructor <P, C, F>(constructor: F) -> Box <Fn(& Dependencies , &Any) -> Box <Any >>
where F: for <'r> Fn(&'r Dependencies , &P) -> C + 'static , P: 'static + Any , C: 'static + Any {

Box::new(move |deps: &Dependencies , parent: &Any| -> Box <Any > {
let concrete_parent = parent.downcast_ref ::<P>(). unwrap ();
Box::new(constructor(deps , concrete_parent))

})
}

versions of [1] overcome this limitation by providing hard-coded
functions for one dependency, two dependencies, etc. This method
also suffers from the same shortfalls in terms of expressiveness,
flexibility, and debugability discussed in Section 3.5.

3.7 Traits
Inspired by the factory approach discussed in 3.5, we wanted to
provide the same heterogenous storage pattern, but with more
robust type safety. Unlike many other object-oriented languages
Rust’s traits do not require unique method names in order to be
implemented together, which meant it might be possible to use a
set of traits to expose type-safe views into the values of a map of
Any objects.

Listing 13: Traits provide type-safe views
struct DepStore { store: HashMap <String , Box <Any >> }

trait PathParts { fn get(&self) -> &Vec <String >; }
impl PathParts for DepStore {

fn get(&self) -> &Vec <String > {
self.store.get(" PathParts "). unwrap ()

.downcast_ref ::<Vec <String >>(). unwrap ()
}

}

trait Query {
fn get(&self) -> &HashMap <String , String >;

}
impl Query for DepStore {

fn get(&self) -> &HashMap <String , String > {
self.store.get("Query "). unwrap ()

.downcast_ref ::<HashMap <String , String >>()

.unwrap ()
}

}

This allows us to hide the boilerplate of retrieving values from
the backing store behind traits, enabling users to declare function

signatures that take any number of different traits, and the frame-
work can pass in the same instance (the map struct) for all of them:

Listing 14: The backing store can be passed as different traits
fn handle (&self , request: &Request) -> ResponseBox {

let deps = DepStore ::new (...);
util:: success (& dispatch (&deps , &deps))

}

fn dispatch <P: PathParts , Q: Query >
(path: &P, query: &Q) -> String {

let path = path.get();
let query = query.get();
...

}

This pattern provides a number of benefits in terms of both safety
and flexibility, but actually implementing it would be quite verbose
— users would need to declare a new trait and impl for each type
they want to inject, and might need to do so repeatedly if they
need to impl a trait for multiple variants of the backing store (e.g. if
certain objects should only be available to a subset of requests). To
reduce this excessive boilerplate, we introduced a set of macros to
generate these types automatically. These macros are included in
Listing 15.

By hiding the boilerplate behindmacros we end upwith a concise
yet highly flexible API for type-safe dependency injection:

Rivet: Dependency Injection in Rust CS 242, Fall 2017, Stanford University

Listing 15: Macros for trait-based dependency injection
/// Constructs a "binder", a struct that can hold arbitrary types , installed via the bind! macro.
/// Usage: binder !(BinderTypeName)
/// BinderTypeName: Name of the struct to define.
macro_rules! binder {

($store:ident) => {
struct $store { store: HashMap <String , Box <Any >> }
impl $store {

fn new() -> $store { $store { store: HashMap ::new() } }
}}}

/// Binds a value to to a binder instance - effectively just a wrapper for
/// BindingTrait ::put(&mut binder , value)
/// but can be used for consistency with the other macro APIs
/// Usage: bind!(store , BindingTrait , Binding)
/// BinderInstance: A Binder instance , where the binding will be stored
/// BindingTrait: Trait which will provide Binding
/// Binding: Instance to bind to the BindingTrait
macro_rules! bind {

($map:ident , $bnd:ident , $value:expr) => {
$bnd::put(&mut $map , $value);

}}

/// Registers a binding , creating a trait with the given name
/// Usage: binding !(BinderType , BindingTraitName , BindingType)
/// BinderType: A binder type , created by binder !()
/// BindingTraitName: Trait to create that will provide the given binding
/// BindingType: Type that BindingTrait will provide
macro_rules! binding {

($store:ident , $name:ident , $ty:ty) => {
trait $name { fn get(&self) -> &$ty; fn put(&mut self , value: $ty); }

impl $name for $store {
fn get(&self) -> &$ty {

match self.store.get(stringify !($name).into ()) {
Some(dep) => { match dep.downcast_ref ::<$ty >() {

Some(dep) => dep ,
None => panic !(" Could not downcast {} to {} - wrong binding! type?",

stringify !($name), stringify !($ty))
}},
None => panic !("{} has no binding for {}!\n\tBound types: {:?}\n",

stringify !($store), stringify !($name), self.store.keys ())
}

}
fn put(&mut self , value: $ty) {

match self.store.entry(stringify !($name).into ()) {
Entry:: Occupied(entry) => {

let existing: &$ty = entry.get(). downcast_ref ::<$ty >(). unwrap ();
panic !(" Conflicting binding for {}; cannot bind to {:?} already bound to {:?}",

stringify !($bnd), value , existing)
},
Entry:: Vacant(entry) => {

entry.insert(Box::new(value) as Box <Any >);
}

}
}}}}

// Registers a provider of a binding , introducing a recursive dependency on another binding
// Note this can only provide references , not owned types (because the closure would be the owner ,
// and it goes out of scope upon returning).
// Usage: provider !(BinderType , ProviderTraitName , ProviderType , DependantTrait , Closure)
/// BinderType: A binder type , created by binder !()
/// ProviderTraitName: Trait to create that will provide the given binding
/// ProviderType: Type that ProviderTrait will provide
/// DependantTrait: Binding trait that the provider depends on
/// Closure: A closure of the form |d: &'a DependantTrait| ... that returns a &ProviderType
macro_rules! provider {

($store:ident , $name:ident , $ty:ty, $dep:ty, $provider_fn:expr) => {
trait $name { fn get(&self) -> &$ty; }

impl $name for $store {
fn get <'a>(&'a self) -> &$ty {

&$provider_fn(self as &$dep)
}}}}

CS 242, Fall 2017, Stanford University Michael Diamond and Matthew Vilim

Listing 16: Using macros to condense the API
binder !(DepStore);
binding !(DepStore , UrlParts , util:: UrlParts);
provider !(DepStore , PathParts , Vec <String >,

UrlParts , |d: &'a UrlParts| d.get(). path_components ());
provider !(DepStore , UrlParams , HashMap <String , String >,

UrlParts , |d: &'a UrlParts| d.get(). query ());

fn handle (&self , request: &Request) -> ResponseBox {
// struct containing both the path and the query
let url_parts = ...;

let mut deps = DepStore ::new();
bind!(deps , UrlParts , url_parts);

user_func (&deps , ...)
}

This example introduces several interconnected macros:
• binder!Creates the struct containing the actual hashmap data
store.

• binding! Creates a trait and impl enabling the listed type to
be retrieved from the binder type via the given trait.

• provider! Creates a trait and impl that recursively depend on
a different trait in the store, rather than on its own data.

• bind! Adds (or binds) a value to the store’s map. If a trait is
used without a value having been bound the user will see a
panic at runtime.

An additional macro, inject!, is provided to transform a function
that takes n binding traits into one that takes exactly one such
argument, which enables the framework to support callbacks of
any number of dependency-injected arguments. This macro proved
to be one of the key limiting factors of this approach, as (it seems9)
the only way to implement such a macro is to enumerate the cases
— one parameter maps to one argument, two parameters map to
two arguments, and so on. The Hypospray project appears to have
run into the same issue, as mentioned in 2.2.

Functionally this is identical to the initial hard-coded trait ap-
proach, but with almost no boilerplate beyond actually specifying
the desired type names. Users get type safety, compartmentalization,
and a fair bit of flexibility in a concise (albeit bespoke) syntax.

Due to the somewhat intricate relationships between the differ-
ent macros there are certain patterns that result in surprising errors
or bugs (such as unexpectedly missing bindings due to implicit
dereferencing), but improvements in the macros’ implementations
has helped reduce their likelyhood and confusion. Debugability
still remains the least-well supported aspect of this approach, but
many common errors, such as unbound types, are able to trigger
clear and detailed panics.

4 RESULTS
4.1 Summary
The design patterns we explored are quite common in other lan-
guages yet are difficult given Rust’s design philosophy as a system’s
language with a preference for doing as much work as possible at
compile-time. Finding ways to bridge that gap, while still taking
advantage of Rust’s safety and performance, is a fine needle to
thread. While no single one of our approaches scored highly in all

9https://stackoverflow.com/q/47767910/113632

the evaluation criteria, the macro-based traits pattern shows the
most promise for providing users with a type-safe and expressive
yet low-boilerplate interface. Pulling in more functionality from
the other approaches could further improve its utility, as would en-
hancing it’s error-detection behavior. Discounting the motivating
approaches, the factory-based method in particular suffered from
low safety, limited flexibility, and verbosity.

4.2 Future Work
• Expand the behavior provided by the trait approach to sup-
port more common Rust patterns, such as enabling mutation
or ownership passing of values held by the backing map.
This requires finding a workable balance of flexibility and
safety, and different balances may be appropriate in differ-
ent cases. For example supporting ownership passing would
effectively mean removing the data from the backing map,
which would cause future attempts to invoke the trait’s get

method to fail at runtime.
• Investigate further metaprogramming and code generation
approaches. Most existing dependency injection style ap-
plications in Rust today rely heavily on code generation,
as it’s the most flexible way to emulate reflection in other
languages. Frameworks like Rocket provide even more ele-
gant APIs than those explored here, essentially all thanks to
compile-time code generation. This was an area we’d hoped
to explore more, but it proved to be a larger space than we
had time to dive into fully.

• Dynamically-typed return types, not just function inputs.
For simplicity, every approach we explored assumed the data
returned to the client would be a String, but webservers often
return binary data such as images, and users may prefer to
work with other higher-level types such as JSON and want
the framework to be responsible for serializing the data they
produce.

5 CONTRIBUTIONS
Michael implemented the Rivet server skeleton andmeta-framework
and the Simplified, Pattern, Closure, and Traits aproaches. Matthew
implemented the Factory and Scope patterns.

REFERENCES
[1] [n. d.]. di-rs. ([n. d.]). https://github.com/Nercury/di-rs.
[2] [n. d.]. hypospray. ([n. d.]). https://github.com/jonysy/hypospray.
[3] [n. d.]. Ownership-driven dependency injection for JavaScript. ([n. d.]). https:

//www.npmjs.com/package/inceptor.
[4] [n. d.]. rust-ioc. ([n. d.]). https://github.com/KodrAus/rust-ioc.
[5] Sergio Benitez and the Rocket authors. [n. d.]. Rocket - Simple, Fast, Type-Safe

Web Framework for Rust. ([n. d.]). https://rocket.rs/.
[6] Wikipedia contributors. 2017. Dependency injection - Wikipedia. (2017). https:

//en.wikipedia.org/wiki/Dependency_injection, accessed 2017-12-13.
[7] Wikipedia contributors. 2017. Strategy pattern - Wikipedia. (2017). https:

//en.wikipedia.org/wiki/Strategy_pattern, accessed 2017-12-13.
[8] Michael Diamond and Matthew Vilim. [n. d.]. Rivet Framework Source Code.

([n. d.]). https://bitbucket.org/dimo414/rivet.
[9] Markus Kohlhase. 2017. Rust web framework comparison. (2017). https:

//github.com/flosse/rust-web-framework-comparison, accessed 2017-11-1.
[10] Pierre Krieger and tiny-http contributors. [n. d.]. tiny-http - Low level HTTP

server library in Rust. ([n. d.]). https://github.com/tiny-http/tiny-http.

https://github.com/Nercury/di-rs
https://github.com/jonysy/hypospray
https://www.npmjs.com/package/inceptor
https://www.npmjs.com/package/inceptor
https://github.com/KodrAus/rust-ioc
https://rocket.rs/
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://bitbucket.org/dimo414/rivet
https://github.com/flosse/rust-web-framework-comparison
https://github.com/flosse/rust-web-framework-comparison
https://github.com/tiny-http/tiny-http

	1 Summary
	2 Background
	2.1 Webservers
	2.2 Prior Art

	3 Approach
	3.1 Qualitative Metrics
	3.2 Simplified
	3.3 Pattern
	3.4 Closure
	3.5 Factory
	3.6 Scope
	3.7 Traits

	4 Results
	4.1 Summary
	4.2 Future Work

	5 Contributions
	References

