
Adding Support for Staged Functions in Spatial
David Koeplinger

dkoeplin@stanford.edu
Tushar Swamy

tswamy@stanford.edu

1 SUMMARY
In this project, we add a limited subset of staged functions
to the Spatial hardware accelerator design language. This
support includes implementation of language support for
staged functions, analyses for optimizing performance and
area, and generating synthesizable implementations of these
staged functions. We evaluate these additions by comparing
the runtime and area of a set of benchmarks compiled with
the current Spatial compiler and with the modified compiler
with staged functions. We show that the addition of staged
functions allows us to reduce resource utilization by 1× to
2×, depending on reuse opportunities, with no performance
overhead.

2 BACKGROUND
2.1 Spatial
Spatial (previously called “DHDL” [6]) is a language and
corresponding compiler being developed in our research group
at Stanford [2]. Spatial is designed to serve as a higher level
language for the development of application accelerators on
reconfigurable architectures, including FPGAs and supported
coarse-grain reconfigurable architectures (CGRAs).

The frontend of Spatial is implemented as a domain-specific
language (DSL) embedded in Scala and built on top of a
modified version of the Lightweight Modular Staging (LMS)
project [7]. Like many other embedded DSLs, operations in
Spatial are defined such that they “staged”. In this scheme,
running an operation does not immediately execute it, but
instead adds nodes to a graph on the fly. The final graph
represents the the entire program being executed, which can
then be optimized by the Spatial compiler.

Spatial provides a mix of control structures and scheduling
directives which help users to more succinctly express their
programs while also allowing the compiler to identify paral-
lelization opportunities. Control structures can be arbitrarily
nested without restriction. Table 1a provides a list of the
relevant control structures in the language for this project.

Spatial programs are internally represented in the com-
piler as a hierarchical dataflow graph (DFG) intermediate
representation (IR). Nodes in this graph represent control
structures, data operations, and memory allocations, while
edges represent data and effect dependencies. Nesting of
controllers directly translates to the hierarchy in the interme-
diate representation graph. Scheduling of control is kept as
metadata in the compiler. Scheduling of each node is derived
from compiler analyses, but can be overriden by the optional
user directives shown in Table 1b.

CS242, Fall 2017, Stanford, CA

(a) Control Structures

min until max by stride * par factor *
A counter over the range [min,max).
stride: optional counter stride, default is 1
factor: optional counter parallelization, default is 1
Foreach (counter +){ body }
A parallelizable for loop.
counter: counter(s) defining the loop’s iteration domain
body: arbitrary expression, executed each loop iteration
Reduce (accum)(counter +){ func }{ reduce }
A scalar reduction loop, parallelized as a tree.
accum: the reduction’s accumulator register
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression which produces a scalar value
reduce: associative reduction between two scalar values
Parallel { body }
Overrides normal compiler scheduling. All statements
in the body are instead scheduled in a fork-join fashion.
body: arbitrary sequence of controllers
Pipe { body }
A “loop” with exactly one iteration.
Inserted by the compiler, generally not written explicitly.
body: arbitrary expression

(b) Optional Scheduling Directives

Sequential .(Foreach | Reduce)
Sets loop to run sequentially.
Pipe (ii *) .(Foreach | Reduce)
Sets loop to be pipelined.
ii: optional overriding initiation interval
Parallel .(Foreach | Reduce)
Informs the compiler that the loop is parallelizable.

Table 1: A subset of Spatial’s control syntax. Parameters fol-
lowed by a ’+’ denote arguments which can be given one or
more times, while a ’*’ denotes that an argument is optional.

When discussing DFG transformations and optimizations,
it is often useful to abstract the program as a tree of control
nodes. This tree abstracts away primitive operations, leaving
only relevant controller hierarchy. In this representation, a
node which contains another node is termed its “parent.”
Within this tree, the least common ancestor (LCA) between
any two control nodes is defined as the last node that is a
common parent to both nodes prior to an uncommon parent.

Figure 1 shows an example application written in Spatial
and its corresponding control tree. The section of the code
which will run on the FPGA is in the Accel scope. This
program loads chunks of an array of records onto the FPGA
from main memory, performs a long series of computations
on each element in the Price and CNDF function calls, and
stores the results back to another on-chip scratchpad. We

CS242, Fall 2017, Stanford, CA David Koeplinger and Tushar Swamy

1 @struct class Elem(
2 sptprice: Float, strike: Float, rate: Float,
3 volatility: Float, time: Float, otype: Int
4)
5
6 def CNDF(x: Float): Float = {
7 val ax = abs(x)
8 val x2 = exp((ax**2) * -0.05f) * 1/sqrt(2*Pi)
9 ... // Long taylor series approximation

10 mux(x < 0, xLocal, xLocalInv)
11 }
12
13 def Price(elem: Elem): Float = {
14 val a = CNDF(...) // Supporting logic
15 val b = ... // Supporting logic
16 val x = if (...) CNDF(a) else CNDF(b)
17 ... // Supporting logic
18 }
19
20 def ExampleApp(args: Array[String]) {
21 val B = 1024 // Block size
22 val data = loadData[Elem]("data.csv")
23 val dram = DRAM[Elem](data.length)
24 val result = DRAM[Float](data.length)
25
26 // Transfer data from host to accelerator
27 sendArray(data, dram)
28
29 Accel {
30 Foreach(0 until dram.length by B){i =>
31 val block = SRAM[Elem](B)
32 val output = SRAM[Elem](B)
33 // Load data DRAM into on-chip memory
34 block load dram(0::width)
35
36 Foreach(0 until B){ii =>
37 output(ii) = Price(block(ii))
38 }
39
40 // Store result back to DRAM
41 block store dram(0::width)
42 }
43 }
44 }

(a) Spatial syntax.

(30) Foreach
Outer, Pipe

(34) Load
Inner, Pipe

(36) Foreach
Inner, Pipe

(29) Accel
Outer, Sequential

(13) Price

e

(40) Store
Inner, Pipefi

(6) CNDF

(16) IfThenElse
Inner, Pipe

(6) CNDF

(6) CNDF

(b) Controller tree.

Figure 1: An example program implemented in Spatial with
corresponding controller tree. The program is inspired by
BlackScholes option pricing, but has additional control flow
at line 16.

elide some of the details of this computation for the sake of
brevity.

Note that the control tree also includes schedule infor-
mation. Both Foreach loops, for example, are set to run
in a pipelined fashion. Operations in one branch of the
IfThenElse are statically known not to run at the same
time as those in the other branch.

2.2 Hardware Modules
Applications are laid out in space on reconfigurable archi-
tectures. This means that an application’s achievable per-
formance is limited by the number of resources it takes up
on the target architecture. A typical FPGA, for example
has two main compute resources: lookup tables, grouped as
“slices” in Xilinx devices and dedicated multipliers (“DSPs”).
This limitation creates a fundamental tradeoff space between
an application’s utilized target resources and its achievable
performance.

In addition to their traditional role in reducing code dupli-
cation, functions (“modules” in hardware) are a key concept
for analyzing the tradeoff between resource utilization and
application performance for hardware accelerators. Since
module instantiations represent sections of hardware with
identical functionality, they give designers coarse-grained
blocks which can either be duplicated to achieve a higher
throughput or time-multiplexed to achiever lower resource
utilization.

In hardware description languages (HDLs), each function
“call”, or module instantiation, is equivalent to duplicating
the module (“inlining the function”) at the call site, albeit
in two-dimensional space rather than the instruction stream.
Reuse of a single instantiation is always explicitly managed
by the hardware designer. High level synthesis (HLS) tools
like Vivado HLS [1] allow a function’s resources to be time-
multiplexed rather than inlined, but this choice is left entirely
up to the user through pragmas. This pragma can only be
specified per function, meaning more complicated usage pat-
terns with a mix of duplication and time multiplexing cannot
be captured by this annotation. Neither HDLs nor HLS tools
support recursive modules/functions.

Spatial supports non-recursive functions, but like HDLs,
currently inlines all function calls. This is the result of Spatial
being an embedded language in Scala. Each function call
occurs during Scala program execution (staging) and does
not register anything within the Spatial dataflow graph. This
limitation is in part due to a lack of support for first-class
syntax for function declarations in LMS.

In Spatial, inlining functions corresponds to duplicating
the hardware resources for each function call. Duplication
may take up area resources unnecessarily, especially when
two calls are guaranteed not to occur concurrently. This also
has the side effect of exploding the size of the program’s
dataflow graph, thus slowing down the Spatial compiler.

The program in Figure 1 is an example of a design where
inlining every function leads to suboptimal resource utiliza-
tion. The calls to the CNDF function on line 16 occur in
two branches of an IfThenElse, meaning they are statically
known to never occur simultaneously for a single input. These
two calls are most efficiently implemented as a multiplexer
on inputs a and b to a single function module. However, this
transformation is impossible without a representation of the
function within the IR.

Additionally, a solution which always time multiplexes
calls to a single CNDF instance, like the HLS function pragma

Adding Support for Staged Functions in Spatial CS242, Fall 2017, Stanford, CA

approach, is also not the right solution, as we would ideally
like to pipeline the calls on line 16 with the call on line 14.
Instead, the ideal design is one with two function instances
created for three function calls, one for the call on line 14
and one for the two calls on line 16.

In this report, we outline the steps we took to add staged
functions/modules and function calls/instantiations to Spa-
tial. To avoid placing time multiplexing decisions on the user
and the inefficiencies of pragma-based approaches, we place
the burden of function duplication and inlining on analysis
passes in the Spatial compiler. This required the following
additions:

∙ We add staging support for function declarations and
calls in Spatial’s Scala frontend (Section 3.1).

∙ We add corresponding function nodes in the Spatial
compiler.

∙ We add a compiler pass in Spatial which optimizes for
module reuse opportunities (Section 3.2).

∙ We add code generation rules for multiplexed (reused)
modules in Spatial (Section 3.3).

Our primary goal in adding this support was to minimize
the area required for a given application without affecting ap-
plication performance. As we show in Section 4, our additions
allow us to maximally exploit module reuse opportunities
with no performance degradation. Resource utilization im-
provements on our benchmarks was between 1× to 2×, but
in practice achievable improvements are highly application-
dependent.

3 APPROACH
3.1 Function Staging
To support simple syntax for staged functions in Spatial, we
first need to capture function declarations and function calls
made in Scala. We found that the best way to do this was
through Scala blackbox macros [4]. Blackbox macros are an
experimental feature in the Scala language which allows the
Scala AST to be transformed, with very few restrictions, after
language parsing and prior to AST typing. We added function
staging to the Spatial language via an optional, user-facing
macro annotation [5] called @module.

Figure 2 shows pseudocode for the input and output of
our @module macro annotation. The macro converts its corre-
sponding function declaration to a Scala object. This object
has one private field, a symbol representing the staged func-
tion, and one method, the method to call the function. Note
that the “apply” method in Scala creates syntax sugar which
allows an instance to be called as if it was a method. This is,
for example, how Function objects in Scala work [3].

During application staging (Scala execution), the staged
function is created immediately and added to the graph like
any other node. Function calls are created on demand and
added to the DFG at the call site through the apply method.

1 @module
2 def functionName(arg1: T1, ... argN: TN): R = {
3 stm1; ...; stmN
4 }

(a) Syntax for a staged function in Spatial.

1 object functionName {
2 // This creates and saves the staged function.
3 private val __function = {
4 // Bound edges representing inputs to the function

.
5 val arg1 = boundVar[T1]
6 ...
7 val argN = boundVar[TN]
8
9 // Create a scope and run all body statements.

10 val body = stageBlock{ stm1; ...; stmN }
11
12 // Stage the function declaration.
13 // This returns an edge representing this function
14 // which can be used in function calls.
15 Func.declare(List(arg1,...,argN), body)
16 }
17
18 // Enables staging of calls to the staged function.
19 // In Scala, the "apply" method allows syntax sugar
20 // for, e.g. functionName(a, b)
21 def apply(arg1: T1, ..., argN: TN): R = {
22 // Stage the function call with given arguments.
23 // Returns an edge representing this staged call.
24 Func.call(__function, List(arg1,...,argN))
25 }
26 }

(b) The AST representing this syntax after the @module macro has
been expanded.

Figure 2: Pseudocode for the @module macro AST expansion.

3.2 Compiler Analysis
After controller scheduling during Spatial compilation, we
analyze each staged function and its corresponding calls in
order to determine the number of physical function instances.
In this analysis, we aim to minimize the amount of device
resources required for all instances of the function while
maintaining the current control schedule defined by the DFG
and its scheduling metadata.

Given the program DFG, we first collect all calls to each
function and record the full control trace, including function
calls, that contain that call. This trace uniquely distinguishes
each function call. For each function 𝑓 , we then group calls
based on whether they are statically known to occur at the
same time. Calls which are known to never at the same time
can be multiplexed to a single function instance, and are
therefore grouped together. The pseudocode for performing
this grouping is shown in Figure 3.

Following function call groupings, we then transform the
DFG. Each function declaration is duplicated by the total
number of groups found in the grouping analysis. Each func-
tion call is then updated to call its corresponding duplicate.
Function instances with only one function call are inlined at
their call site.

CS242, Fall 2017, Stanford, CA David Koeplinger and Tushar Swamy

1 function Compatible(𝑐, 𝐼):
2 for all calls 𝑐′ in 𝐼:
3 lca = LCA(𝑐′, 𝑐)
4 if lca ∈ 𝑃 𝑎𝑟𝑎𝑙𝑙𝑒𝑙 or lca ∈ 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒:
5 return false
6 end for
7 end for
8
9 𝐶 → set of sets of multiplexable calls

10 𝐶 = ∅
11 for all calls 𝑐 to function 𝑓:
12 for all set of calls 𝐼 in 𝐶:
13 if Compatible(𝐼, 𝑐) then
14 add 𝑐 to 𝐼
15 break
16 else add {𝑐} to 𝐼
17 end for
18 end for
19 return C

Figure 3: Pseudocode for the compiler pass determining func-
tion duplicates for a given function 𝑓 . 𝑃 𝑎𝑟𝑎𝑙𝑙𝑒𝑙 is the set of
Parallel control nodes. 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒 is the set of control nodes
which have a pipelined execution schedule.

3.3 Code Generation
Once the compiler has duplicated and updated the IR nodes
for function declaration instances and their corresponding
calls, it can begin emitting code in Chisel. Chisel is a high level
hardware construction language that is embedded in Scala.
The Spatial compiler uses Chisel as a backend language which
is then compiled down to Verilog and then finally synthesized
for a target FPGA board using Xilinx tools such as the
Vivado toolchain.

The hardware for the function declaration is first emitted
by creating a one hot multiplexer for each input argument as
well as each standard control signal used by Spatial controllers.
Finally, the body of the function is emitted as a standard
Spatial block. If the output of the function body is a value
that can be represented in bits, it is tied as the value of all
calling nodes in the dataflow graph.

Next, the function call hardware is created by tying the
enable signal from the call’s parent node directly to a bit
in the selector of each multiplexer created by the associ-
ated function declaration. The arguments and control signals
passed from the function call’s controller parent are attached
to the inputs on the appropriate multiplexers. While this
configuration adds minor overhead in the form of the mul-
tiplexers that select arguments, the cost of this should be
far less than duplication of the function body in most cases.
A block diagram of the resulting hardware can be seen in
Figure 5.

3.4 Limitations
We conclude our description of our language and compiler
additions with a discussion of the limitations of our prototype
implementation of staged functions.

Memory Aliasing. We currently assume that only types
with a statically known number of bits can be passed as

Figure 4: Generated Function Hardware for a reused function
with two inputs

inputs or outputs of functions. This includes primitive values,
as well as custom structs of primitives like the Elem struct
shown in Figure 1.

It should be possible to extend our logic for function du-
plication to include passing local and off-chip memories as
arguments and outputs of functions. This requires managing
memory aliases within the compiler. Aliases should always be
statically determinable, since aliases between on-chip memo-
ries ultimately correspond to multiplexers. In practice, mul-
tiplexers will be needed for the address, data, and enables
for loads and stores.

Unfortunately, the Spatial compiler currently assumes that
memory aliases do not occur within the program IR. While
this assumption is not fundamental to the correct operation
of the compiler, it is pervasive across most of the compiler’s
analysis passes. Updating these passes to allow memory alias-
ing in the context of function calls proved to be beyond the
scope of this project, but should be possible in the future.

Recursive Functions. Our staged function implementation
and analyses currently assume that there are no recursive
function calls. The @module macro assumes that a function
will not be called while staging that function’s declaration,
and our function call analysis assumes that there are no
cycles in the call trace.

In order to support recursive functions, the staged function
macro will have to be modified to create two separate IR
nodes/edges: a placeholder for the function name declaration
and a function body declaration. This will allow functions to
be called prior to completing the staging of the function body.
Additionally, the call analysis will have to include specific
logic to account for cycles. We may be able to translate special
cases such as tail recursive calls to loops, but other cases will
require multiplexing of recursive calls to avoid exponential
duplication of the function.

4 RESULTS
In this section, we examine the effects of our compiler changes
on design runtime and area across four benchmarks. Each

Adding Support for Staged Functions in Spatial CS242, Fall 2017, Stanford, CA

Figure 5: Reuse Variants for Benchmarks

benchmark has three variants exposing different levels of
module reuse.

4.1 Methodology
Each of the four applications in our benchmark suite was
designed to target a specific aspect of a typical Spatial pro-
gram.

Nested-1. The first application in our suite was a simple
primitive test where the program’s only function performed a
single multiplication operation. The simplicity of operations
and lack of added control logic allowed us to test the basic
functionality of our compiler modifications.

Nested-2. Our second benchmark demonstrates our im-
provements on doubly-nested function calls with a large
amount of computation. The basis for the compute in this
application is the calculation of the Black-Scholes financial
model.

Nested-3. Our second benchmark adds another layer of
function call nesting to the Nested-2 test to demonstrate our
compiler’s analysis on deeper function call traces like those
found in real applications.

Looped. Our last benchmark demonstrates the ability of
our approach to account for control logic within function
bodies. In this test, each functional call performs a reduction
that sums across values in a dataset

Figure 5 shows the three types of control flow in our bench-
marks for calling a function multiple times. Each is inspired
by a common control pattern we see in real applications, and
each has different levels of function module reusability.

In the first variant, we test the ability of a single time mul-
tiplexed module to handle all function calls made throughout
the program. Function calls are scheduled such that they
are never called concurrently. If the function calls are the
dominating logic in the program, we would expect to see a
2× improvement in area compared to the inlined baseline.

In the second variant, we test the ability of the compiler
to handle programs where there is partial availability for
module reuse. Function invocations made concurrently result
in duplicated hardware, while sequential calls should reuse
hardware. In the case where function calls dominate the

design area, we again expect to see a maximum of 2× area
improvement over the baseline.

Finally, the third variant tests the scenario where there
is no reuse possible because all calls are made concurrently.
All function calls will be inlined, so we expect to see areas
similar to our baseline tests.

We synthesized each benchmark with and without our
compiler modifications using the Xilinx Vivado toolchain
to target the Zynq ZC706 SoC board. We then ran the
benchmarks on the board in order to verify correctness and
measure the effect our modifications had on the runtime
of the application. The inner body of our benchmarks are
wrapped in a loop that runs one million times in order to
simulate runtimes typically seen on real datasets, and to
produce a measurable runtime that is not dominated by data
transfer to the FPGA.

4.2 Discussion
The results of these comparisons are summarized in Table 2.
We see that in the best case, the Nested-3 benchmark, we
achieve a 1.95× improvement in slice utilization and a 2×
improvement on DSP utilization when all function calls in
the program can be reused. This is because Nested-3 has
extremely compute-heavy function calls which use between
25 - 95% of the FPGA’s DSPs. In the case of the Nested-3-
Some benchmark, the inlined version of the program requires
more DSPs than the FPGA has available, and therefore
could not be synthesized or run. However, after applying our
staging modifications, the program only required about half
of the available DSPs and easily fit on the board. In general,
the more complex the compute logic in our application, the
better results we see in terms of slice and DSP utilization.
The overhead of adding multiplexers at function inputs is
negligible compared to the total size of the function.

In the None reuse cases, where no function reuse was pos-
sible, all function calls were inlined after staging, effectively
making the baseline and staged versions of the program the
same. The variation in slice utilization in these cases is negligi-
ble and occurs as a result of minor variations in the synthesis
tool.

In the Looped benchmarks, benefits in DSP utilization
are due to reuse of control logic. Accordingly, we see the
largest reduction in DSP in this application due to additional
optimizations done by the synthesis tool.

Finally, examining the runtime of each benchmark, we see
that, in all cases, we have the same runtime of the staged
version of the application as the inlined version. In fact, be-
cause our benchmarks have statically determinable runtimes,
we see that the runtimes are consistently identical. This hap-
pens because, although we have duplicated compute logic,
we have not changed the behavior of control logic in any way.
The compiler modifications that we made therefore have no
detrimental performance effects.

CS242, Fall 2017, Stanford, CA David Koeplinger and Tushar Swamy

Slices DSPs Runtime (ms)
Benchmark Reuse Function 54650 900 —

Nested-1 Full
Inlined 3881 6 269
Staged 3877 3 269
Change 1.001× 2× 1×

Some
Inlined 3965 12 409
Staged 3932 6 409
Change 1.008× 2× 1×

None
Inlined 3881 6 149
Staged 3814 6 149
Change 1.018× 1× 1×

Nested-2 Full
Inlined 16453 330 3389
Staged 9069 165 3389
Change 1.814× 2× 1×

Some
Inlined 28598 660 5089
Staged 15606 330 5089
Change 1.833× 2× 1×

None
Inlined 16043 330 1709
Staged 16211 330 1709
Change 0.9896× 1× 1×

Nested-3 Full
Inlined 25548 456 5009
Staged 13103 228 5009
Change 1.950× 2× 1×

Some
Inlined 𝐷𝑁𝐹 𝐷𝑁𝐹 𝐷𝑁𝐹
Staged 24036 456 7519
Change NA 2× NA

None
Inlined 25492 456 2519
Staged 25346 456 2519
Change 1.005× 1× 1×

Looped Full
Inlined 4007 6 2419
Staged 3956 3 2419
Change 1.013× 2× 1×

Some
Inlined 4397 12 3629
Staged 4180 3 3629
Change 1.052× 4× 1×

None
Inlined 3980 6 1219
Staged 4014 6 1219
Change 0.9915× 1× 1×

Table 2: Area utilization and runtime comparisons between
inlined and staged functions in Spatial. The first row lists the
total number of FPGA resources available. DNF: Design did
not fit on the FPGA.

5 CONCLUSION
In this report, we present modifications to the Spatial com-
piler that allow for the staging of a function module that can
be time-multiplexed across calls. We first enable the declara-
tion of staged functions in the Spatial syntax by making use
of Scala blackbox macros. We next add compiler analyses and
transformation passes that are able to determine which mod-
ules can be reused and perform function duplications which
minimize area given these reuse opportunities. Finally, we
add code generation rules to the Spatial compiler that allow it
to output Chisel code for time-multiplexed function calls. We

show the effectiveness of our modifications by synthesizing
and running 12 benchmarks that cover a number of common
control scenarios with varying levels of function reuse. This
demonstrated that resource utilization was improved by 1×
to 2× while having no impact on the application’s runtime.

6 WORK DISTRIBUTION
Equal work was performed by both project members.

REFERENCES
[1] 2016. Vivado High-Level Synthesis. http://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html. (2016).
[2] 2017. Spatial-Lang Repository. https://github.com/stanford-ppl/

spatial-lang. (Dec 2017).
[3] 2017. Twitter Scala School: Functions are Objects. https://twitter.

github.io/scala_school/basics2.html. (Dec 2017).
[4] Eugene Burmako. 2017. Blackbox vs. Whitebox. https://docs.

scala-lang.org/overviews/macros/blackbox-whitebox.html. (Dec
2017).

[5] Eugene Burmako. 2017. Macro Annotations. https://docs.
scala-lang.org/overviews/macros/annotations.html. (Dec 2017).

[6] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delim-
itrou, Christos Kozyrakis, and Kunle Olukotun. 2016. Automatic
Generation of Efficient Accelerators for Reconfigurable Hardware.
In International Symposium in Computer Architecture (ISCA).

[7] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular
Staging: A Pragmatic Approach to Runtime Code Generation
and Compiled DSLs. In Proceedings of the Ninth International
Conference on Generative Programming and Component En-
gineering (GPCE ’10). ACM, New York, NY, USA, 127–136.
https://doi.org/10.1145/1868294.1868314

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://github.com/stanford-ppl/spatial-lang
https://github.com/stanford-ppl/spatial-lang
https://twitter.github.io/scala_school/basics2.html
https://twitter.github.io/scala_school/basics2.html
https://docs.scala-lang.org/overviews/macros/blackbox-whitebox.html
https://docs.scala-lang.org/overviews/macros/blackbox-whitebox.html
https://docs.scala-lang.org/overviews/macros/annotations.html
https://docs.scala-lang.org/overviews/macros/annotations.html
https://doi.org/10.1145/1868294.1868314

	1 Summary
	2 Background
	2.1 Spatial
	2.2 Hardware Modules

	3 Approach
	3.1 Function Staging
	3.2 Compiler Analysis
	3.3 Code Generation
	3.4 Limitations

	4 Results
	4.1 Methodology
	4.2 Discussion

	5 Conclusion
	6 Work Distribution
	References

