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1    SUMMARY 
 

There are thousands of programming languages in existence, with at least dozens or hundreds of these in 

common use in a broad range of industries and applications.  Different languages offer different strengths 

and weaknesses along many dimensions that programmers may care about, including safety, performance, 

portability, developer productivity, and so on.  The objective of this project is to explore specific trade-

offs along two dimensions – performance and code complexity – for a few simple but numerically 

intensive algorithms implemented in several commonly-used programming languages.  My experimental 

results show that while “dynamic” or “scripting” languages like Python appear to offer a moderate 

advantage in terms of code complexity and readability, “static” or compiled languages like C++ have a 

clear performance advantage – on the order of 10x for the simple algorithms under consideration here.  

Converting plain C++ code to Nvidia’s CUDA – a C++ variant specifically designed to interface with 

Nvidia’s GPU hardware – adds some additional complexity, but the performance benefit varies from 

minor to massive (~100x), depending on the specific algorithm being run and its adaptability to a massive 

parallel computing environment.   

 

2    PROBLEM BACKGROUND 
 

Though there are many programming languages available for both domain-specific and general-purpose 

computing tasks, not every language is created equal.  Most programming languages in use today were 

created with certain purposes or design goals in mind; those goals are often clearly reflected in the 

structure and syntax of the language, as well as the many decisions that the designers made for the 

language’s environment and runtime.  For example, the Rust programming language that we studied in 

CS 242 was created by Mozilla to serve as a replacement for C/C++ in the organization’s Firefox web 

browser, and so its design prioritizes features like speed and (safe) concurrency that are highly visible in 

its use of pointers and its data ownership/borrowing rules.  

 

One common axis along which programmers evaluate the suitability of a language for a particular task is 

the spectrum from “lower-level” to “higher-level” languages.  Though there is no precise boundary 

defined between “low-level” and “high-level” languages, or canonical agreement on which high-level 

languages may be higher than others, it is generally understood by computer scientists that the higher a 

language’s level, the more abstraction it provides from the details of the underlying computer hardware.  

By modern definitions, languages like C are often considered relatively low-level, as they provide direct 

access to key elements of the computer hardware (primarily the memory), and they typically offer very 

little runtime support (in the form of a garbage collector or other execution environment above the level 

of the operating system).  On the opposite end of the spectrum, very high-level languages like Python 

have extensive runtime environments that act as an intermediary between the program code and the 

operating system, and they rely heavily on abstractions and data structures that often simplify common 

tasks for the programmer, but also mask the structure and behavior of the underlying hardware.  The usual 

trade-off is that higher-level languages allow for simpler, more compact, and more readable code, but 

code written in these languages usually runs more slowly than code in lower-level languages, because the 



language runtime has to translate the language’s programmer-friendly abstractions into a form that 

matches the computer’s physical hardware and operating system interfaces.  Thus, most programmers 

would bias toward C/C++ for performance-critical applications, while perhaps preferring Python for 

programs where performance is less critical but the benefits of Python’s flexible data structures and rich 

standard library are pronounced.    

 

The trade-off between various languages and programming models becomes even more stark when 

parallelization enters the picture.  Parallel computation has long been a top strategy for accelerating 

performance, and it has become particularly important over the past 5-10 years as clock speeds and circuit 

density have begun to hit physical limits.  The challenge is that parallel execution does not happen 

automatically: though compilers can introduce some forms of optimization, it is typically up to the 

programmer to write explicitly parallel code in order to take full advantage of distributed or parallel 

computing environments.  This type of software is almost always substantially more complex than single-

threaded code, requiring careful design on the part of the programmer and usually decreasing the 

readability and debuggability of the code.  In order to allow the programmer to exert significant control 

over memory management and thread execution, parallel programming often needs a somewhat lower-

level language that exposes specific details of the underlying hardware and operating system.   

 

From my own experience working in a variety of programming languages, I was already somewhat 

familiar with the qualitative benefits and drawbacks of working in relatively lower-level languages (e.g. 

systems languages) and higher-level languages (e.g. scripting languages).  In terms of the themes of CS 

242, I believe these qualitative elements correspond well to the idea of “expressiveness.”  However, it 

was less clear to me how these “expressiveness” factors might stack up against the more directly 

quantitative “performance” factors resulting from the choice of one language or another.  For example, if 

C were only 10% faster than Python for a particular computational task, but the Python code for that task 

were much more readable or significantly easier for the programmer to write and debug, then perhaps the 

speed gain from switching to C would not justify the corresponding loss of expressiveness and clarity.  

However, if C were 10 times faster than Python for that same task, the case for Python might be much 

less compelling, regardless of its user-friendly abstractions.   

 

To explore these trade-offs more concretely, I decided to build my project around an experimental 

analysis of both the qualitative and quantitative factors of choosing different languages for the same task.  

The idea was to quantify the performance gaps between the languages while also considering the 

complexity of their code, so as to have a more reliable basis for judging which languages came closest to 

the “sweet spot” of great performance and great expressiveness.   

 

3    EXPERIMENTAL APPROACH 
 

The foundational element of my quantitative benchmarking approach was to identify one or more 

algorithms that were simple enough to be implemented similarly in multiple programming languages, but 

complex (and computationally intensive) enough to expose any meaningful performance differences 

between these languages.  Since I intended to benchmark each algorithm in both sequential and parallel 

execution environments, it was also important that I choose algorithms that were relatively adaptable to a 

parallel computation approach.  For example, a sequential search or sorting algorithm might have the 



right level of complexity for my experiment, but it would not necessarily translate well to a parallel 

language.  After some consideration, I settled on the following two algorithms:  

 

 Matrix multiplication: Linear algebra computations play an important role in many classes of 

software applications, including graphics, robotics, finance, CAD, artificial intelligence, and more.  

With high-dimensional datasets or large numbers of variables, running even conceptually 

straightforward routines like plain matrix multiplication can quickly become computationally 

demanding.  I originally considered implementing a semi-optimized form of matrix multiplication, 

such as Strassen’s algorithm [2], but ultimately settled on the “naïve” algorithm since my purpose 

was not to maximize speed, but to compare speed across languages.   

 Numeric data compression: Compression is a ubiquitous technique for reducing the size of data 

files, and is frequently applied to a broad range of data formats, including images, video, sound, 

text, and more.  The computational requirements of compression algorithms vary by technique, 

but in most cases they are non-trivial, and both hardware and software systems are often 

optimized to maximize compression and decompression performance for common applications.  

For benchmarking purposes, I decided to implement an index compression routine like those 

often used in databases and web search systems.  This routine takes a pre-built index – i.e., a 

mapping from terms to documents where the term appears – and uses bitwise arithmetic to 

encode each document ID using the minimum number of bytes required to represent the ID in 

binary form.  This technique is known as variable-byte encoding [3].   

 

The following table gives an overview of the steps involved in each algorithm:  

 

Processing step Matrix multiplication Index compression 

Data generation / 

preparation 

A Python script is invoked with 

parameters for the number and dimension 

of matrix files to produce; for each file, a 

matrix is produced by selecting a random 

integer for each element, and the matrix is 

stored to disk in text format. 

A corpus of Stanford web pages is processed 

to produce an index that maps string tokens 

to a list of numeric document IDs containing 

that token; the index is stored to disk as a 

single file in binary format. 

Data loading 
Matrix files are read into memory one at a 

time; each multiplication is carried out 

before the next file is loaded. 

Entire index file is read into memory, with 

appropriate accounting for the binary format 

and endianness of the bytes being read; each 

term ID corresponds to a list of integer 

document IDs. 

Core algorithm 

execution 

The matrix is multiplied by itself, and the 

time required for the multiplication 

operation is measured.  (All matrices in 

the test dataset are square, so dimensions 

are fully compatible.) 

Each list of document IDs is encoded using 

gap encoding, and the resulting gap value is 

compressed into an array of bytes using 

variable-byte encoding.  The time required 

for both gap encoding and VB encoding is 

measured. 

 

Table 1: Description of algorithms used for performance benchmarking 



The other key choice for my experimental design was the set of languages/environments in which I would 

benchmark the performance of these two algorithms.  Based on the factors discussed in the “problem 

background” section above, I chose the following three languages:  

 For a higher-level (a.k.a. scripting) language, I selected Python, since I have substantial personal 

experience with it, and it has become a widely used language for diverse applications in both 

industry and academia.  Python is an interpreted, dynamically-typed language that offers a rich 

standard library and many convenient built-in data structures and syntactic shortcuts that make it 

very programmer-friendly in most situations.   

 For a lower-level language, I chose C++, which is probably the closest thing to a global standard 

for writing performance-sensitive code.  C++ is a compiled language that allows developers to 

access powerful capabilities of the underlying computing hardware, but it also has extensive 

libraries and object-oriented capabilities for building large software systems.   

 To learn about the possible performance and complexity trade-offs of moving to a parallel 

computing environment, I also chose to implement each algorithm using Nvidia’s CUDA 

language.  CUDA is based on C++ and shares most of its core concepts with that language, but it 

has been extended in specific ways to give programmers access to the unique capabilities of 

Nvidia’s GPU hardware.  (For example, programmers can write functions that are specifically 

intended to be run in parallel on the hundreds or thousands of small processing cores built into 

every Nvidia GPU.)   

In each language, I attempted to follow best practices for high-resolution tracking of the processing time 

required to run my core algorithms.  I ran my experiments on a cloud-based compute instance provided by 

Google Cloud Platform.  The machine I selected had 2 virtual CPU cores, 7.5 GB of main memory, and a 

single Nvidia Tesla K80 server-class GPU.   

 

4    RESULTS & DISCUSSION 

4.1 Evaluating Performance: Quantitative Results 
 

After completing the implementations of each algorithm in each of the three languages described in the 

previous section, I carried out multiple benchmarking runs to evaluate the performance of each language 

on each task.  My approach differed slightly across the two problems: in the matrix multiplication case, I 

was able to experiment with different numbers of matrices and different dimensions, since generating 

additional test data was fast and simple.  In the compression case, since I was using a fixed corpus of real 

data, I didn’t have as much latitude to expand the scope of the problem.  Nevertheless, both algorithms 

revealed some interesting observations.   

 First, the general trend of performance was clear and consistent with my original expectations.  

Python was the slowest language on each task, often falling behind C++ by roughly a factor of 

10x-20x.  CUDA on the GPU was the fastest on each task.   

 Performance differences between the tasks became more pointed as the tasks became more 

computationally demanding.  For example, on the multiplication task with small matrices (only 

10x10 elements), the gap between Python and C++ was still relatively small in an absolute sense 



– perhaps because both languages required some overhead to read the matrix files from disk.  

However, when dealing with matrices with 1000 elements in each dimension, the gap widened 

substantially.  I expect this is because the overhead of reading files was still only an O(n
2
) 

operation, but the process of computing the actual product matrix is O(n
3
) – so the actual 

mathematical operations take up a much larger proportion of the CPU time required for the end-

to-end run.   

 One notable result was that the benefit of the parallelized GPU code in comparison with the 

“plain” C++ code was much larger for the matrix multiplication task than the index compression 

task.  For example, on a 1000x1000 matrix, the CUDA version of the computation required less 

than a tenth of a second to multiply the entire matrix, vs. nearly 10 seconds required by the 

original C++ code (and more than 3 minutes required by Python).  This represents a speedup of 

more than 2700x between Python and CUDA, and still more than a 100x speedup between the 

serial and parallel C++ implementations.  In contrast, the index compression task showed only a 

15 percent gain in performance between the baseline C++ implementation and the parallel version.  

This is likely because the index compression task still has an element of sequential processing 

that is difficult to avoid – and it also requires some extra data manipulation in order to work well 

on a GPU, as discussed in the next section.   

The table and chart below show an example of average computation times for both tasks in each language.  

(Note the logarithmic scale on the chart’s vertical axis, which allows a more clear reading of the relative 

times for each language on each algorithm.)  Speedup factors for each language vs. the others are also 

highlighted in the lower part of the table.   

 

Table 2 (left): Time in seconds required to execute each algorithm, and speedup factors for each language relative to others.  

Times for matrix multiplication are for each single matrix product, averaged over 100 different matrices of the given dimension.  

Figure 1 (right): Graphical representation of execution times for each language on each task, shown on logarithmic scale. 

 

 

 
 



 4.2 Evaluating Expressiveness & Code Complexity: Qualitative Factors 

 

Developing code for the same task in 3 different languages and programming environments provided a 

useful foundation on which to compare the expressiveness of each language and its place on the spectrum 

from relative simplicity to relative complexity.  Key observations that I made during this process included 

the following:  

 Python was unquestionably the most compact of the 3 languages I considered.  I was able to 

write code for each task in about 75 lines of Python code, while my C++ code averaged about 

140 lines, and CUDA required closer to 200.   

 I also found the Python code to be substantially more readable and easier to understand on later 

inspection than the C++ and CUDA code, which are relatively comparable to each other.  This is 

a subjective judgment, but I believe it’s a reasonable one – and I don’t believe it’s a result of a 

specific bias toward Python in my own programming experience, as I’ve almost certainly written 

more code in compiled languages than in scripting languages like Python over my software 

development career. 

 A large part of Python’s advantage in compactness and simplicity appears to arise from its easy 

built-in mechanisms for working with data and data structures of diverse types.  Some of this 

functionality is core to the language itself, while some other parts are included in the standard 

library.  For example, my implementation of matrix multiplication included some code to open 

the directory where the test data was stored, enumerate its contents, filter out files not matching 

the expected format, and open the remaining files to read and tokenize each line.  This whole 

process took less than 10 lines of simple code in Python, while the same thing in C++ required 

roughly 25 lines plus two auxiliary functions that were not supplied by the standard library.  

Similarly, populating and iterating over lists of data in Python typically took only a single simple 

expression in Python, while C++ required explicit memory allocation and indexing for most 

structures of this type.   

 One area where Python’s advantage is less clear is in working with binary data.  The index 

compression tasks relies heavily on binary manipulation: the original (uncompressed) index is 

read in binary format, and then the individual document IDs are compressed using bitwise 

manipulations of the underlying binary data.  On one level, C++ has a meaningful advantage 

here, as its strong type system (and explicit types for things like “unsigned 8-bit integer”) allows 

the programmer to be confident about how binary manipulations will operate on variables.  Then 

again, Python still has some valuable library code for working with binary data – for example, to 

read multiple bytes directly from a file and convert them automatically into a specific data type – 

that still appears to be lacking in C++.   

 Finally, it’s worth saying a word about CUDA C++ in comparison with ordinary C++.  The 

languages themselves are very similar, and I feel that Nvidia has done a good job making its 

CUDA-specific modifications easy to understand for programmers who are already familiar with 

C++.  (Even with just some basic tutorials [4], I was able to get my parallel code up and running 

on the GPU without much difficulty, despite never having programmed in CUDA before.)  The 

biggest challenge that arises with CUDA is the need to redesign specific computational tasks to 

work well in a parallel environment.  For example, CUDA “kernel functions” (the bits of code 



that run on GPU cores) must generally adhere to a specific format: they cannot have a return 

value, but must instead operate on shared memory, and each sub-task must be able to execute 

independently without dependencies on the results of any other sub-task.  In the case of my index 

compression task, this actually required the index data to be converted from its “natural” format 

(used in the Python and C++ code) to a contiguous, fixed-size memory block, and then converted 

back again after the parallel computation was done.  The overhead of these conversions almost 

certainly negated much of the performance boost that I achieved by performing the actual 

compression step in parallel, and ultimately meant that my CUDA implementation of the overall 

compression task was only slightly faster than the original C++ implementation.   

 

5    CONCLUSIONS & FUTURE WORK 
 

On one level, my observations of both quantitative and qualitative benefits for each of these three 

languages were unsurprising: performance goes up but expressiveness and simplicity go down when 

moving from a higher-level language (Python) to a lower-level language (C++) to a hardware-dependent 

language (CUDA).  However, one thing that was somewhat surprising to me was the magnitude of the 

performance differences I observed, especially on the matrix multiplication task.  Although Python may 

offer some benefits in terms of readability and developer productivity, it seems unlikely that its 

convenience makes things 10x or 100x easier on any qualitative dimension – while my results show that 

performance gains of that magnitude or greater may be available when making the switch to a natively-

compiled language and/or a GPU.  In this scenario, I find it difficult to claim that any performance-

sensitive code should be written in a language like Python, regardless of its “expressiveness” advantages.   

Moving forward, I would be interested in expanding my simple benchmarks to a wider range of languages.  

In particular, I am curious how the commonly-used class of bytecode-compiled languages – including 

industry stalwarts like Java and C# (or the .NET family more broadly) – would fare in this type of 

comparison.  Based on personal experience, I believe that languages like C# actually strike the best 

balance between safety, performance, expressiveness, and availability of rich code libraries.  It would be 

enlightening to test this hypothesis more rigorously by extending the experiments described here.    
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