
Analyzing Compute Performance Across Languages and Hardware

Darren Baker, Stanford University

1 SUMMARY

There are thousands of programming languages in existence, with at least dozens or hundreds of these in

common use in a broad range of industries and applications. Different languages offer different strengths

and weaknesses along many dimensions that programmers may care about, including safety, performance,

portability, developer productivity, and so on. The objective of this project is to explore specific trade-

offs along two dimensions – performance and code complexity – for a few simple but numerically

intensive algorithms implemented in several commonly-used programming languages. My experimental

results show that while “dynamic” or “scripting” languages like Python appear to offer a moderate

advantage in terms of code complexity and readability, “static” or compiled languages like C++ have a

clear performance advantage – on the order of 10x for the simple algorithms under consideration here.

Converting plain C++ code to Nvidia’s CUDA – a C++ variant specifically designed to interface with

Nvidia’s GPU hardware – adds some additional complexity, but the performance benefit varies from

minor to massive (~100x), depending on the specific algorithm being run and its adaptability to a massive

parallel computing environment.

2 PROBLEM BACKGROUND

Though there are many programming languages available for both domain-specific and general-purpose

computing tasks, not every language is created equal. Most programming languages in use today were

created with certain purposes or design goals in mind; those goals are often clearly reflected in the

structure and syntax of the language, as well as the many decisions that the designers made for the

language’s environment and runtime. For example, the Rust programming language that we studied in

CS 242 was created by Mozilla to serve as a replacement for C/C++ in the organization’s Firefox web

browser, and so its design prioritizes features like speed and (safe) concurrency that are highly visible in

its use of pointers and its data ownership/borrowing rules.

One common axis along which programmers evaluate the suitability of a language for a particular task is

the spectrum from “lower-level” to “higher-level” languages. Though there is no precise boundary

defined between “low-level” and “high-level” languages, or canonical agreement on which high-level

languages may be higher than others, it is generally understood by computer scientists that the higher a

language’s level, the more abstraction it provides from the details of the underlying computer hardware.

By modern definitions, languages like C are often considered relatively low-level, as they provide direct

access to key elements of the computer hardware (primarily the memory), and they typically offer very

little runtime support (in the form of a garbage collector or other execution environment above the level

of the operating system). On the opposite end of the spectrum, very high-level languages like Python

have extensive runtime environments that act as an intermediary between the program code and the

operating system, and they rely heavily on abstractions and data structures that often simplify common

tasks for the programmer, but also mask the structure and behavior of the underlying hardware. The usual

trade-off is that higher-level languages allow for simpler, more compact, and more readable code, but

code written in these languages usually runs more slowly than code in lower-level languages, because the

language runtime has to translate the language’s programmer-friendly abstractions into a form that

matches the computer’s physical hardware and operating system interfaces. Thus, most programmers

would bias toward C/C++ for performance-critical applications, while perhaps preferring Python for

programs where performance is less critical but the benefits of Python’s flexible data structures and rich

standard library are pronounced.

The trade-off between various languages and programming models becomes even more stark when

parallelization enters the picture. Parallel computation has long been a top strategy for accelerating

performance, and it has become particularly important over the past 5-10 years as clock speeds and circuit

density have begun to hit physical limits. The challenge is that parallel execution does not happen

automatically: though compilers can introduce some forms of optimization, it is typically up to the

programmer to write explicitly parallel code in order to take full advantage of distributed or parallel

computing environments. This type of software is almost always substantially more complex than single-

threaded code, requiring careful design on the part of the programmer and usually decreasing the

readability and debuggability of the code. In order to allow the programmer to exert significant control

over memory management and thread execution, parallel programming often needs a somewhat lower-

level language that exposes specific details of the underlying hardware and operating system.

From my own experience working in a variety of programming languages, I was already somewhat

familiar with the qualitative benefits and drawbacks of working in relatively lower-level languages (e.g.

systems languages) and higher-level languages (e.g. scripting languages). In terms of the themes of CS

242, I believe these qualitative elements correspond well to the idea of “expressiveness.” However, it

was less clear to me how these “expressiveness” factors might stack up against the more directly

quantitative “performance” factors resulting from the choice of one language or another. For example, if

C were only 10% faster than Python for a particular computational task, but the Python code for that task

were much more readable or significantly easier for the programmer to write and debug, then perhaps the

speed gain from switching to C would not justify the corresponding loss of expressiveness and clarity.

However, if C were 10 times faster than Python for that same task, the case for Python might be much

less compelling, regardless of its user-friendly abstractions.

To explore these trade-offs more concretely, I decided to build my project around an experimental

analysis of both the qualitative and quantitative factors of choosing different languages for the same task.

The idea was to quantify the performance gaps between the languages while also considering the

complexity of their code, so as to have a more reliable basis for judging which languages came closest to

the “sweet spot” of great performance and great expressiveness.

3 EXPERIMENTAL APPROACH

The foundational element of my quantitative benchmarking approach was to identify one or more

algorithms that were simple enough to be implemented similarly in multiple programming languages, but

complex (and computationally intensive) enough to expose any meaningful performance differences

between these languages. Since I intended to benchmark each algorithm in both sequential and parallel

execution environments, it was also important that I choose algorithms that were relatively adaptable to a

parallel computation approach. For example, a sequential search or sorting algorithm might have the

right level of complexity for my experiment, but it would not necessarily translate well to a parallel

language. After some consideration, I settled on the following two algorithms:

 Matrix multiplication: Linear algebra computations play an important role in many classes of

software applications, including graphics, robotics, finance, CAD, artificial intelligence, and more.

With high-dimensional datasets or large numbers of variables, running even conceptually

straightforward routines like plain matrix multiplication can quickly become computationally

demanding. I originally considered implementing a semi-optimized form of matrix multiplication,

such as Strassen’s algorithm [2], but ultimately settled on the “naïve” algorithm since my purpose

was not to maximize speed, but to compare speed across languages.

 Numeric data compression: Compression is a ubiquitous technique for reducing the size of data

files, and is frequently applied to a broad range of data formats, including images, video, sound,

text, and more. The computational requirements of compression algorithms vary by technique,

but in most cases they are non-trivial, and both hardware and software systems are often

optimized to maximize compression and decompression performance for common applications.

For benchmarking purposes, I decided to implement an index compression routine like those

often used in databases and web search systems. This routine takes a pre-built index – i.e., a

mapping from terms to documents where the term appears – and uses bitwise arithmetic to

encode each document ID using the minimum number of bytes required to represent the ID in

binary form. This technique is known as variable-byte encoding [3].

The following table gives an overview of the steps involved in each algorithm:

Processing step Matrix multiplication Index compression

Data generation /

preparation

A Python script is invoked with

parameters for the number and dimension

of matrix files to produce; for each file, a

matrix is produced by selecting a random

integer for each element, and the matrix is

stored to disk in text format.

A corpus of Stanford web pages is processed

to produce an index that maps string tokens

to a list of numeric document IDs containing

that token; the index is stored to disk as a

single file in binary format.

Data loading
Matrix files are read into memory one at a

time; each multiplication is carried out

before the next file is loaded.

Entire index file is read into memory, with

appropriate accounting for the binary format

and endianness of the bytes being read; each

term ID corresponds to a list of integer

document IDs.

Core algorithm

execution

The matrix is multiplied by itself, and the

time required for the multiplication

operation is measured. (All matrices in

the test dataset are square, so dimensions

are fully compatible.)

Each list of document IDs is encoded using

gap encoding, and the resulting gap value is

compressed into an array of bytes using

variable-byte encoding. The time required

for both gap encoding and VB encoding is

measured.

Table 1: Description of algorithms used for performance benchmarking

The other key choice for my experimental design was the set of languages/environments in which I would

benchmark the performance of these two algorithms. Based on the factors discussed in the “problem

background” section above, I chose the following three languages:

 For a higher-level (a.k.a. scripting) language, I selected Python, since I have substantial personal

experience with it, and it has become a widely used language for diverse applications in both

industry and academia. Python is an interpreted, dynamically-typed language that offers a rich

standard library and many convenient built-in data structures and syntactic shortcuts that make it

very programmer-friendly in most situations.

 For a lower-level language, I chose C++, which is probably the closest thing to a global standard

for writing performance-sensitive code. C++ is a compiled language that allows developers to

access powerful capabilities of the underlying computing hardware, but it also has extensive

libraries and object-oriented capabilities for building large software systems.

 To learn about the possible performance and complexity trade-offs of moving to a parallel

computing environment, I also chose to implement each algorithm using Nvidia’s CUDA

language. CUDA is based on C++ and shares most of its core concepts with that language, but it

has been extended in specific ways to give programmers access to the unique capabilities of

Nvidia’s GPU hardware. (For example, programmers can write functions that are specifically

intended to be run in parallel on the hundreds or thousands of small processing cores built into

every Nvidia GPU.)

In each language, I attempted to follow best practices for high-resolution tracking of the processing time

required to run my core algorithms. I ran my experiments on a cloud-based compute instance provided by

Google Cloud Platform. The machine I selected had 2 virtual CPU cores, 7.5 GB of main memory, and a

single Nvidia Tesla K80 server-class GPU.

4 RESULTS & DISCUSSION

4.1 Evaluating Performance: Quantitative Results

After completing the implementations of each algorithm in each of the three languages described in the

previous section, I carried out multiple benchmarking runs to evaluate the performance of each language

on each task. My approach differed slightly across the two problems: in the matrix multiplication case, I

was able to experiment with different numbers of matrices and different dimensions, since generating

additional test data was fast and simple. In the compression case, since I was using a fixed corpus of real

data, I didn’t have as much latitude to expand the scope of the problem. Nevertheless, both algorithms

revealed some interesting observations.

 First, the general trend of performance was clear and consistent with my original expectations.

Python was the slowest language on each task, often falling behind C++ by roughly a factor of

10x-20x. CUDA on the GPU was the fastest on each task.

 Performance differences between the tasks became more pointed as the tasks became more

computationally demanding. For example, on the multiplication task with small matrices (only

10x10 elements), the gap between Python and C++ was still relatively small in an absolute sense

– perhaps because both languages required some overhead to read the matrix files from disk.

However, when dealing with matrices with 1000 elements in each dimension, the gap widened

substantially. I expect this is because the overhead of reading files was still only an O(n
2
)

operation, but the process of computing the actual product matrix is O(n
3
) – so the actual

mathematical operations take up a much larger proportion of the CPU time required for the end-

to-end run.

 One notable result was that the benefit of the parallelized GPU code in comparison with the

“plain” C++ code was much larger for the matrix multiplication task than the index compression

task. For example, on a 1000x1000 matrix, the CUDA version of the computation required less

than a tenth of a second to multiply the entire matrix, vs. nearly 10 seconds required by the

original C++ code (and more than 3 minutes required by Python). This represents a speedup of

more than 2700x between Python and CUDA, and still more than a 100x speedup between the

serial and parallel C++ implementations. In contrast, the index compression task showed only a

15 percent gain in performance between the baseline C++ implementation and the parallel version.

This is likely because the index compression task still has an element of sequential processing

that is difficult to avoid – and it also requires some extra data manipulation in order to work well

on a GPU, as discussed in the next section.

The table and chart below show an example of average computation times for both tasks in each language.

(Note the logarithmic scale on the chart’s vertical axis, which allows a more clear reading of the relative

times for each language on each algorithm.) Speedup factors for each language vs. the others are also

highlighted in the lower part of the table.

Table 2 (left): Time in seconds required to execute each algorithm, and speedup factors for each language relative to others.

Times for matrix multiplication are for each single matrix product, averaged over 100 different matrices of the given dimension.

Figure 1 (right): Graphical representation of execution times for each language on each task, shown on logarithmic scale.

 4.2 Evaluating Expressiveness & Code Complexity: Qualitative Factors

Developing code for the same task in 3 different languages and programming environments provided a

useful foundation on which to compare the expressiveness of each language and its place on the spectrum

from relative simplicity to relative complexity. Key observations that I made during this process included

the following:

 Python was unquestionably the most compact of the 3 languages I considered. I was able to

write code for each task in about 75 lines of Python code, while my C++ code averaged about

140 lines, and CUDA required closer to 200.

 I also found the Python code to be substantially more readable and easier to understand on later

inspection than the C++ and CUDA code, which are relatively comparable to each other. This is

a subjective judgment, but I believe it’s a reasonable one – and I don’t believe it’s a result of a

specific bias toward Python in my own programming experience, as I’ve almost certainly written

more code in compiled languages than in scripting languages like Python over my software

development career.

 A large part of Python’s advantage in compactness and simplicity appears to arise from its easy

built-in mechanisms for working with data and data structures of diverse types. Some of this

functionality is core to the language itself, while some other parts are included in the standard

library. For example, my implementation of matrix multiplication included some code to open

the directory where the test data was stored, enumerate its contents, filter out files not matching

the expected format, and open the remaining files to read and tokenize each line. This whole

process took less than 10 lines of simple code in Python, while the same thing in C++ required

roughly 25 lines plus two auxiliary functions that were not supplied by the standard library.

Similarly, populating and iterating over lists of data in Python typically took only a single simple

expression in Python, while C++ required explicit memory allocation and indexing for most

structures of this type.

 One area where Python’s advantage is less clear is in working with binary data. The index

compression tasks relies heavily on binary manipulation: the original (uncompressed) index is

read in binary format, and then the individual document IDs are compressed using bitwise

manipulations of the underlying binary data. On one level, C++ has a meaningful advantage

here, as its strong type system (and explicit types for things like “unsigned 8-bit integer”) allows

the programmer to be confident about how binary manipulations will operate on variables. Then

again, Python still has some valuable library code for working with binary data – for example, to

read multiple bytes directly from a file and convert them automatically into a specific data type –

that still appears to be lacking in C++.

 Finally, it’s worth saying a word about CUDA C++ in comparison with ordinary C++. The

languages themselves are very similar, and I feel that Nvidia has done a good job making its

CUDA-specific modifications easy to understand for programmers who are already familiar with

C++. (Even with just some basic tutorials [4], I was able to get my parallel code up and running

on the GPU without much difficulty, despite never having programmed in CUDA before.) The

biggest challenge that arises with CUDA is the need to redesign specific computational tasks to

work well in a parallel environment. For example, CUDA “kernel functions” (the bits of code

that run on GPU cores) must generally adhere to a specific format: they cannot have a return

value, but must instead operate on shared memory, and each sub-task must be able to execute

independently without dependencies on the results of any other sub-task. In the case of my index

compression task, this actually required the index data to be converted from its “natural” format

(used in the Python and C++ code) to a contiguous, fixed-size memory block, and then converted

back again after the parallel computation was done. The overhead of these conversions almost

certainly negated much of the performance boost that I achieved by performing the actual

compression step in parallel, and ultimately meant that my CUDA implementation of the overall

compression task was only slightly faster than the original C++ implementation.

5 CONCLUSIONS & FUTURE WORK

On one level, my observations of both quantitative and qualitative benefits for each of these three

languages were unsurprising: performance goes up but expressiveness and simplicity go down when

moving from a higher-level language (Python) to a lower-level language (C++) to a hardware-dependent

language (CUDA). However, one thing that was somewhat surprising to me was the magnitude of the

performance differences I observed, especially on the matrix multiplication task. Although Python may

offer some benefits in terms of readability and developer productivity, it seems unlikely that its

convenience makes things 10x or 100x easier on any qualitative dimension – while my results show that

performance gains of that magnitude or greater may be available when making the switch to a natively-

compiled language and/or a GPU. In this scenario, I find it difficult to claim that any performance-

sensitive code should be written in a language like Python, regardless of its “expressiveness” advantages.

Moving forward, I would be interested in expanding my simple benchmarks to a wider range of languages.

In particular, I am curious how the commonly-used class of bytecode-compiled languages – including

industry stalwarts like Java and C# (or the .NET family more broadly) – would fare in this type of

comparison. Based on personal experience, I believe that languages like C# actually strike the best

balance between safety, performance, expressiveness, and availability of rich code libraries. It would be

enlightening to test this hypothesis more rigorously by extending the experiments described here.

REFERENCES

[1] Miłosz Ciżnicki, Michał Kierzynka, Piotr Kopta, Krzysztof Kurowski, Paweł Gepner. Benchmarking Data and

Compute Intensive Applications on Modern CPU and GPU Architectures. In Procedia Computer Science, Volume 9,

2012, Pages 1900-1909.

[2] “Strassen Formulas.” Wolfram Mathworld, accessed 11/3/2017.

http://mathworld.wolfram.com/StrassenFormulas.html

[3] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze. Introduction to Information Retrieval.

Cambridge University Press, 2008.

[4] Mark Harris. “An Even Easier Introduction to CUDA.” Nvidia blog post, accessed 11/27/2017.

https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/

[5] Nicholas Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison Wesley, 2013.

http://mathworld.wolfram.com/StrassenFormulas.html
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/

