Applications of Generalized Algebraic Data Types in OCaml

Junjie Ke
Department of Computer Science
Stanford University

junjiek@stanford.edu

Abstract

The introduction of generalized algebraic data types
(GADTs) makes it syntactically possible to constrain type
parameters for the return type of the constructors of a
data type, which results in more efficient compilation, bet-
ter memory representation and higher performance. In this
project, I look into various applications of GADTs in or-
der to understand its usage and benefits. In particular, 1
use GADTs in OCaml for implementing a lambda calculus-
like language, an efficient, well-typed LR parser and an ef-
ficient AVL tree. Results show that the GADTs LR parser
can be well-typed, efficient without runtime checks and that
the GADTs AVL tree is almost twice as efficient as the tra-
ditional non-GADTs implementations.

1. Introduction

Generalized algebraic data types, or GADTs, is a way to
restrict the return types of constructors for providing a vari-
ety of non-regular types. Previously, it’s sometimes hard for
the compiler to figure out the return types for each branch of
pattern matching which results in valid but non-typecheck
codes. GADTs overcomes the limitation through an explicit
local specification of the typing context in each branch.

Appropriate use of GADTs allows the typechecker to
know more about the valid states of the program which can
be verified during compilation instead of runtime. More-
over, GADTs allow the programmer to track more informa-
tion about their datatypes which make it possible to write
safer, well-typed and more efficient code. As a result,
both existing paradigms (e.g. indexed lists) and previously
uncheckable paradigms (e.g. typed printf) can be improved.

In this project, I investigate three different applications
of GADTs in order to gain a better understanding of its us-
age, performance and benefits of using them.

Firstly, I familiarize myself with GADTs in OCaml
by implementing a lambda-calculus like language in both
GADTs and non-GADTs way. This is a canonical exam-
ple to demonstrate how generalized algebraic data types can

improve the efficiency and expressiveness of the program.

Secondly, I build a well-typed GADTSs LR parser in [3]
as well as its optimized variant. Compared to the non-
GADTs version, the GADTs LR parser successfully get rid
of redundant runtime check while remaining well-typed and
improving the performance.

In order to have a better understanding of GADTs’ im-
pact on the performance of real-world applications, I choose
to re-implement a classic data structure, the AVL tree, using
GADTs. I compare the performance between non-GADTs
and GADTs AVL tree, showing that the GADTSs implemen-
tation can improve the insertion speed by x1.7.

Lastly, I formalize the notion of GADTs in a lambda cal-
culus type system and establish the type soundness of the
type system.

In section 2, I describe related works on the GADTSs
theory and real-world applications. In section 3, I would
present the design and techniques of the GADTs applica-
tions I implement. In section 4, I would present the ex-
periment results as well as the formal semantics for using
GADTs in the lambda calculus and a proof of progress,
preservation.

2. Related Works
2.1. GADTs Theory

Generalized algebraic data types were introduced by Xi,
Chen and Chen under the name guarded recursive datatype
constructors [3)]. A guarded recursive datatype is a datatype
with local (i.e. existentially quantified) type variables as-
sociated with each data constructor. Each type argument
for constructing the datatype can be specialized within each
datatype case. They formalized the type theory of GADTs
by introducing an explicitly typed calculus Az g, language
and also an elaboration process from an implicitly typed
source language to Az g, for supporting unobstrusive pro-
gramming.

Independently, Cheney and Hinze formulated a very sim-
ilar system named as first-class phantom types [1]]. Phantom
types, first introduced by Leijen and Meijer [2]] to embed

domain specific languages into Haskell type safely, are pa-
rameterized types that do not use their type arguments at
runtime. Instead, the arguments are only checked statically
at compile time. However, the original phantom type en-
codings can only enforce type constraints when construct-
ing values, but not when decomposing a value. Cheney and
Hinze filled the gap by putting the formerly unused type
variables in type equations to refine the argument types.
They showed that their first-class phantom types can be
used to define type representations and generic functions in
a more efficient and more expressive way.

2.2. GADTs Applications

More recently, generalized algebraic data types have
been put to a large variety of uses. Those use cases demon-
strate that GADTs enables functional programmers to code
any dependently-typed program by using some simple en-
coding tricks.

Well-typed Parsers

Parsing is a classic and extremely well-studied topic in
programming language. The most straightforward way to
showcase the expressiveness and efficiency of GADTS is
writing a fast and type-safe parser which does not require
values to carry run-time tags. Pottier and Regis-Gianas [3]
showed that, for a fixed LR(1) automaton, the inductive in-
variant that describes the stack and guarantees safety can
be encoded as GADTs. In addition to a safety guarantee,
this approach has better performance than non-GADTs ML
implementation because it gets rid of redundant tags and dy-
namic checks (e.g. stack cells must be redundantly tagged
with nil or cons). However, Pottier et al. mainly focused on
the theoretical safety guarantees and did not report any per-
formance figures. In this project, I would put the effort in
implementing both the GADTs and non-GADTs LR parsers
using OCaml as well as running performance comparison
experiments.

More Efficient Functions

With the power of GADTs, it is possible to re-implement
real-world applications in a more efficient and type-safe
form. For example, Vaugon [4]] proposed to use GADTsS in-
stead of strings to represent printf/scanf formats in OCaml,
which not only improves the performance but also fixes po-
tential bugs and stabilizes the code. This new implementa-
tion of formats has a positive impact on OCaml community
and is a real usage of GADTs to elegantly solve real-world
problems.

However, since GADTs is relatively new to OCaml pro-
grammers and the syntax is somewhat complicated at first
glance, there is little information and resources in how peo-
ple utilize GADTs in building and improving real-world ap-
plications. In order to understand the potential benefit of
using GADTs, I want to use GADTs to improve a classic
data structure, AVL tree, and compare the performance.

3. Methods

In this section, I describe the design and techniques of
three GADTSs applications I look into.

3.1. Simple Lambda Calculus

A canonical example of demonstrating how to use
GADTs is re-implementing a simple lambda calculus lan-
guage.

3.1.1 Non-GADTs Approach

Without GADTs, we can define the language as below:

I type typ = | Boolean | Integer
> | Arrow of typ * typ
;s type exp = | And of exp * exp

4+ | Add of exp * exp

| App of exp #* exp

| Lam of string * typ * exp
| Var of string

| Int of int

| Bool of bool

i1 let el=Add(Int 0, Add(Int 1, Int 2))

> let e2=And(Bool false, Bool true)

13 let e3=App(Lam(”x”,Integer ,

1 Add(Var ”x”,Var ”x”)), Int 1)
5 let e4=Add(Int 1, Bool true) (x Error x)

In this language, eq, e, e3 are syntactically correct expres-
sions, but e5; should be invalid because we want And to be
applied to two Bool and Add to be applied to two Int.
Therefore, when writing the eval function, we need to
check the types of the operants and throw error with un-
expected types.

let rec eval env e =
> match e with
s | Add(el, e2) —>
4 let vl = eval env el in
5 let v2 = eval env e2 in (
6 match (vl, v2) with
| (Integer il, Integer i2)
8 —> Integer (il + i2)
- —> failwith “Integer Type Error”

3.1.2 GADTs Approach

The problem with non-GADTs is that, since both Int and
Bool are of type exp, we don’t know how to distinguish
the two before run time. GADTs solves the probelm by
restricting the type parameter of a type constructor.

I type (-,-) exp =

> | Int int = (’e, int) exp

s | Bool bool —> (’e, bool) exp

4] Add : (e, int) exp * (’e, int) exp

s —> (’e, int) exp

6] And : (e, bool) exp * (’e, bool) exp

=

7 —> (’e, bool) exp
| App : ("e, (Ca—>"b)) exp * (e, 'a) exp
—> (’e, ’'b) exp
| Lam : ((a % ‘e), 'b) exp
— (’e, ("a —> b)) exp
> Var0 : (("a * ‘e), a) exp
s | VarS @ (Ce, ‘a) exp —> (("bx’e), ’a) exp

By simply listing the type signatures of all the constructors,
we can let the compiler figure out the correct arguments for
us. For example, when an Add type appears, we know that
the two arguments would be an integer instead of boolean.

let rec eval: type e t.e—>(e,t)exp—>t

>»= fun env e —>
; match e with

TR

| Add (el,e2) —>

let vl = eval env el in
let v2 = eval env e2 in
vl + v2

We can implement an evaluation function as above that
takes advantage of the type marker. Notice that, this time,
we don’t need to check the types of e; and e, when evalu-
ating Add.

3.2. Typed LR Parser

In this section I will discuss the setup of LR parser and
show how the GADTs design can improve the non-GADTSs
approach.

3.2.1 Grammar

(1) B} +T) — Elrty)
(2) T{z} — FE{z}
(3) T} «Fly) - T{rxy)
(4) F{z} — T{x}
(5) (E{z}) — F{z}
(6) int{z} — F{z}

Figure 1: LR parser grammar with semantic actions

As listed in Figure[I] the grammar’s tokens are int, +, *, (
and). The input stream ends by the token $. The grammar’s
nonterminal symbols are F/,T" and F', which represents ex-
pression, term and factor. E is also the starting symbol.

Figure [2] shows the finite deterministic pushdown au-
tomation for the grammar. It maintains a current state
si,t € 0...11 and a operator stack o ::= €|osv where €
is the empty stack and osv denotes pushing new state s and
value v on to the stack.

STATE action goto
int + *x () $ |F T F

0 sb s4 1 2 3

1 s6 acc

2 r2 s7 2 12

3 rd 14 rd 14

4 sb s4 8§ 2 3

5 6 16 6 16

6 sh s4 9 3

7 sb s4 10

8 s6 sl11

9 rl s7 rl rl

10 r3 13 3 13

11 b 1H RS ¥5)

Figure 2: Pushdown automation table for the expression
grammar

3.2.2 Non-GADTs LR Parser

As a simple ML implementation of the automation, we can
encode the stack as follows.

type stack =
| SEmpty
| SP of stack x state
| SSof stack x state
| SL of stack x state
| SR of stack x state
| SI of stack x state x int
| SE of stack x state x int
| ST of stack x state X int
| SF of stack x state x int

P, S, L, R and I are short for Plus, Star, Left bracket,
Right bracket and Int. The type stack carries a tag. The
pushdown automation is parameterized by the current state
and stack. It may end up returning the final integer result or
raising a Syntax Error exception.

For example, if we’re currently at state 9 and the next to-
ken is +. According to Figure[2]we want to reduce by gram-
mar rule (1) E{z} + T{y} — E{x + y}. The syntactically
correct stack must look like {ST, SP, SE}. We can get the
operators x, y from the stack, produce a new semantic value
x + y and a new stack cell.

This non-GADTs approach models the stack as arbitrary
sequences of (state, value) pairs. We can not detect syn-
tax error without actually running the program because we
know nothing about what’s going to be on the stack. There-
fore, in the parser evaluation code, we need to use “match s
with” everywhere to dynamically check the stack and raise
error when the stack is invalid. We also need to write a lot
of error checking code to ensure the matching constructs are
exhaustive. This is a waste of time and code because by the

design of the automation rules, the valid stacks that do arise
at runtime are not arbitrary.

In the next section, I'll show how we can make use of
GADTs to get rid of superfluous runtime checks.

3.2.3 GADTs LR Parser

The idea is to associate the state with the expected stack
shape. To do so, we associate the type of state with a type
variable o which is also the type of the current stack. Figure
[3] shows the encoding.

1 (x Types for stack cells. *)
2 type empty = SEmpty

s+ type a ¢cP = SP of a X « state

1 type a ¢S = SS of a X a state

s type a cL = SL of a X « state

s type a cR = SR of a X v state

7 type a ¢l = SI of av X v state x int

s type a cE = SE of a x « state x int
s type a ¢T = ST of o x v state x int
1w type a cF = SF of a X « state x int

12 (x The type of states. *)
13 type state : x — x where
u | SO : empty state

15 | SI: empty cE state

16 | S2: VYa.a cT state

ir | 83 : Vo cF state

S4 : Ya.a cL state
S5 : Va.a cl state

S6 : Ya.a cE cP state

S7 : Va.a ¢T ¢S state

S8 : Va.a cL cE state

S9 : Va.a cE ¢P ¢T state
S10 : Ya.a ¢T ¢S cF state
S11 : Va.a cL cE cR state

25

Figure 3: GADTs LR parser stack and state encoding

The generalized state type allows the compiler to check
the dependency between the current state and current stack.
For example, if we are at state S9, matching the stack
with ST(SP(SE(stack,s,x),-),-,y) would always suc-
ceed because the compiler knows the shape of the state.

The reduce action now doesn’t need to perform runtime
check and the parser is well-typed.

3.24 GADTs LR Parser Optimization

As mentioned in [3]], we can further optimize the code by
associating the specific state number with the stack. The
reason is that the stacks that do arise at runtime are not ran-
dom but range over a strict subset, which is given in Fig-
urdd] For example, when the automation is in state 5, then
we know that the top cell holds a state in subset {0, 4, 6,
7} and a semantic value int. The optimized stack and state
encodings are shown in FigureJ|

Stack shape State
€ 0
e {0} E 1
o {0,4} T 2
o {046} F 3
o {0,467} (4
o {0,4,6,7} int 5
o {04} E {18} + 6
o {046} T {29} * 7
o {0,4,6,7} ({4 E 8
o {0,4} E {18} + {6} T| 9
o {0,4,6} T {2,9 * {7} F| 10
o {0,467 ({44 E {8)| 1

Figure 4: The LR parser automation invariant

type empty = SEmpty
type (o, p) cP = SP of a x (o, p) state
type (a,p) ¢S =SS of a x (a, p) state
t\pe (a, p) cL = SL of a X («v, p) state
(a, p) cR = SR of o x («, p) state
6 type (a, p) eI = ST of & X («, p) state x int
the (a, p) ¢cE = SE of a X (av, p) state x int
(a, p) ¢T = ST of a x (e, p) state X int
> (@, p) ¢F = SF of a x (v, p) state x int

u type state : (%, row) — % where

12 | SO : (empty, {0}) state

13| ST :V7.((empty, (0)) cE, {1}) state
| 82 Vay.((a, (0,4)) T, {2}) state

15| S3: Vay. ((a, <0 4,6)) cF,{3}) state

w6 | S4:Vay.((a,(0,4,6,7)) cL,{4}) state

i | S5 Vay.((a, (0,4,6,7)) cI, {5}) state

s | S6: Voy.(((a, <O 4)) cE, < ,8)) cP,{6}) state

1w | S7: Vay.(((«, 0,4, 6)) cT, (2,9)) ¢S, {7}) state

20 | S8 : Vay.(((a, (0,4,6,7)) cL, (4)) cE, {8}) state

a1 | S9: Vay.((((a, (0,4)) cE, (1,8)) cP, (6)) ¢T,{9}) state

22 | S10: Vay.((((«r, (0,4,6)) T, (2,9)) ¢S, (7)) cF, {10}) state
2 | S11: Voy.((((e, (0,4,6,7)) cL, (4)) cE, (8)) cR,{11}) state

2 val run : Yap.(a, p) state — a — int
26 val gotoE : Vay.(a, p) state — (a, p) cE — int
a7 where p = (0,4)

Figure 5: Optimized GADTSs LR parser stack and state en-
coding

3.2.5 Comparison Experiment Setup

I implement all three versions of LR parser: non-GADTs,
GADTs without optimization, GADTs with optimization.
The evaluation programs for those three parsers are almost
identical. Only the type annotations carried by the function
changes. Therefore, it will be a fair comparison between
GADTs and non-GADTs.

Firstly I compare the verboseness and number of “’non-
exhaustive” warnings of three approaches. Then I randomly
generate expressions with around 4000, 5000, 6000, 6500,
7600, 9000 tokens (Int, Add, Multiply, Left/Right Brack-
ets). The tokens and the integer values are randomly cho-
sen. For each expression I run each of the program 10 times
and record the average running time. The comparison re-

sults are shown in section [4.1]

3.3. AVL Tree

In this section, I’ll discuss how to use GADTSs to improve
the performance of the classic AVL Tree.

3.3.1 Non-GADTs AVL Tree

The most important feature of an AVL is that the height
of left subtree and right subtree differs at most by 1. To
maintain this feature, we need to keep track of the balance
factor (height of right subtree minus height of left subtree)
whenever we insert a node.

In a typical non-GADTSs implementation, each node is
associated with the height. Then in each insertion, we com-
pute the balance factor and if imbalanced, we do the re-
balancing by rotating left or rotating right.

type t = Leaf
| Node of t % int * t * height

: let height = function

TR

| Leaf —> 0
| Node (-, -, -, h) = h
In this non-GADTs implementation, we assume that the
height of left and right subtree can be any non-negative in-
teger. However, since we are re-balancing the AVL tree for
each insertion, we know that there are only three cases for
the height of left/right subtree: hy, = hg — 1, hy, = hg or
hy, =hg+1.

We can utilize this information to do smarter re-
balancing without frequently computing the difference of
the heights.

3.3.2 GADTs AVL Tree

Using GADTs, we can define the nodes in AVL tree as fol-
lows:

type z =7 : z

type 'd s =S : ’d—> 'd s

s type (-, -, -) diff =

| Less (’d, ’d s, ’d s) diff
s | Same : (’d, ’d, ’d) diff

o | More : (’d s, 'd, °d s) diff

©

type (’a,’d) tree =

| Empty : ("a,z) tree
| Tree (’a,’m) tree * ’a * (’a,’n) tree
¥ ('m,’n,’0) diff — (’a,’0 s) tree

In line 8, ’a is the type of the element (int, bool etc), ’d is
the depth of the tree which is represented by a sequence S.
With the new depth representation, we can easily define the
three cases hy, = hg — 1, hy, = hgor hy, = hr + 1 as
Less, Same and More respectively (line 4-6). The three
arguments for di £ f represents height for left subtree, right
subtree and current node. Lastly, for each tree node, we
maintain a di £ £ for left/right subtree height difference.

i let rec run: (x Function signature %) =

>fun s 1 stack —>

s match s, (peek 1) with

s | S2, KPlus —

s let ST(stack,s,x)=stack in
gotoE s 1 (SE(stack, s,

s | S2, KStar —>

o run S7 (discard 1) (SS(stack,

0]

X))
$))

Figure 6: Implementation for the LR Parser Pushdown Au-
tomation

Thanks to GADTS, during insertion, we can have a good
understanding of how the local tree looks like without cal-
culating the balancing factor. This means we can directly
match on the diff for each node and do smarter rotation
based on the di £ £ for left and right subtrees.

3.3.3 Comparison Experiment Setup

I implement the insertion function for both non-GADTs
AVL and GADTs AVL. To compare the performance, I
generate lists of 1000, 10000, 100000, 150000, 200000,
250000 random integers and insert them into the AVL tree. I
run each setup 10 times and the average total insertion time
is reported. The results are listed in section 4.2}

4. Results

In this section, I'll report the experiment results as well
as present the formal semantics for using GADTs in the
lambda calculus and a proof of progress and preservation.

4.1. LR Parser Performance Comparison

I compare the performance of non-GADTSs, GATDs, op-
timized GATDs LR parsers. To make this a fair comparison,
the function for running the automation is almost the same
except for the function type signatures. The evaluation code
looks like Figure [6]

4.1.1 Verbosity

Firstly, I compare the number of “non-exhaustive” match
warnings in three programs.

In non-GADTs LR parser, whenever we want to use let
to match the shape of the stack (like line 6 in Figure [6)),
the compiler will complain that the pattern-matching is not
exhaustive”.

In fact, using the same block of code, non-GADTs
method generates 26 warnings when compiling. GADTs
without optimization generates only 3 non-exhaustive warn-
ings in the gotoE, gotoT, gotoF functions because we
do not know the states that are associated with E, T and F

as listed in Figure] With the optimization mentioned in
section there will be 0 warning, which means all the
pattern-matchings are exhaustive.

This shows that GADTs is able to help programmers get
rid of many superfluous runtime checks and unnecessary
warnings. By associating the stack cell with type variables,
we can keep track of the stack’s structure by just examining
the current state. As a result, the compiler knows that the
“match” and let” cases could not fail.

Thanks to the new type information, those formerly non-
exhaustive pattern matching construct has become exhaus-
tive and this will allow the compiler to produce better ma-
chine code without a runtime check, even though the source
code is almost the same. The GADTs method yields better
efficiency for programming, and more importantly, stronger
correctness is guaranteed.

4.1.2 Performance

To compare the runtime performance, I randomly generate
lists of expressions with around 4000, 5000, 6000, 6500,
7600, 9000 tokens (Int, Add, Multiply, Left/Right Brack-
ets). The average running time for non-GADTs, GADTs
and GADTs with optimization are shown in Figure

0.0040

»~—4 GADTs
+~— Non-GADTs

0.0035 44 GADTSs-opt /‘\-\/'

0.0030

0.0025

0.0020

Average Total Running Time (s)

0.0015

0.0010 ‘ v . v
4000 5000 6000 7000 8000 9000

Number of elements in the stack

Figure 7: Performance Comparison Between non-GADTs
and GADTs LR Parser

From the graph we can see that when the number of
tokens is large, GADTs methods outperform non-GADTs
methods. The speed up is around x1.5 from non-GADTs
to GADTs. The optimized GADTs methods is able to run
even faster, although the gap between optimized and non-
optimized GADTs is small.

4.2. AVL Tree Performance Comparison

In this section, I will show the results for comparing
the insertion performance of GADTs and non-GADTs AVL

12

~—a GADTs
+— Non-GADTs

g
o

o
©

Average Total Insertion Time (s)
o =}
) o

e
N

0.0
0 50000 100000 150000 200000 250000

Number of Inserted Elements

Figure 8: Performance Comparison Between non-GADTs
and GADTs AVL Tree Node Insertion

trees. I generate lists of 1000, 10000, 100000, 150000,
200000, 250000 random integers and insert them into those
AVL trees. The average total runtime is shown in Figure

From the graph we can see that GADTs consistently out-
performs non-GADTs AVL tree. With the increase in num-
ber of inserted elements, the gap between GADTSs and non-
GADTs is widening. The average speedup is around x1.7.

As discussed in section [3.3.2] the reason why GADTSs
is able to run much faster is that we can avoid computing
the balance factor for each insertion. GADTSs enables us to
associate diff with every node and diff is exactly the
information we need to know while re-balancing.

This result shows that GADTs method can be very pow-
erful in improving the performance of real-world applica-
tions, especially for large-scale systems.

4.3. Semantics of GADTs in the lambda calculus

In this section I present the formal semantics of using
GADTs for explicitly typed lambda calculus.

4.3.1 Syntax

types ou=7|Int|oy X 09|01 — 0a |
T(G) | Va:k.o

expressions ex=1i|z|Ax:oe|elr]|(e1,e2) |
erey | fst(e) | snd(e) |
Aack.e | C[T)e

values va=i|Axioe| {er,es) |
Aackw | Cl7le

kinds Ku=%|Kk— K

constructors Tui=a|lnn|Int] - | x |T

equations €EL=T] =To

type contexts A=A ak

expression contexts I = |T, z:o

equation contexts U=-| P, ek

substitutions ©:=-10,a="71

datatype contexts Yu=-|S;type T ok = X

datatype signatures = .| 27 | 3B:5.C7 with €R

4.3.2 Typing Rules
A;U;Abe:o

AT R Int AU T Ha:T(x)
A;U: T, xiobke: o
A;U:T'E Axioe:0 — o
A;U:T'Fe:01 AU Eop =09
A;U:T'He:og
AU T'Fer:0—0 AU ThRey:o
A;U: T Fejes: o
Aok U:I'Fe:o
A;U: T F Aaik.e : Yaik.o
AU T'Fe:Vark AbFT:K
A;U:T Felr] : o[r/a]
A;U:T'Fe 01 A;U:TFes:og
A; 0T F (eq,e9) : 01 X 09
A;U;T'Fe:oy xoy A;U:T'Fe:op Xoo
A; U T Hoste):op A; ;T Fsnd(e) : o9
Sr.ca=38:r.Cowither’ AW e o7 /a,7/B)
AU F [T /o, T/0] ;K AF Tk
AU T - CFle: TT

4.3.3 Type Soundness

Progress If -;-;- | e : T then either e is a value or there
exists €' such that e — e’

Proof. Let vy : T represent that +y is a function mapping
variables bound in T to values such that -; -; - - v(x) : T'(x),
0 : A; U represent that 6 maps type variables bound in A to
type constructors of appropriate kinds so that W is satisfied:
-Fd(a): A(e)and ;- F (1) =7 € 0.

Let 6(0) and vd(e) represent the result of substituting all
type or term variables in a type o or expression e with their
values in y or ¢.

Then the induction hypothesis is generalized to: If
O;U:T'Fe:7and v : T',§ : A; U then either vd(e) is
a value or there exists ¢’ such that vé(e) — ~vd(e’). Proof is
by induction on the derivation of A; U;T'F e : 0.

case e is i or \z:0.e; or (p1, p2) or C[7]é: Then e is a
value, as expected.

case e is fst(e) or snd(e): Then we can follow the typing
rules to find e — ¢’

case e is x: This is not possible because we would have
F z : 7 and from the empty environment we cannot assign
any type to x.

case e is e1[7]: By the typing rules, the normal derivation
ends in a use of Aﬁg’:ﬁiﬁ‘;’ig[f/zm. Hence, - e; : Vaix
and - 7 : k. Since type application is an evaluation context,
ey is irreducible. Hence by induction hypothesis, e; is a
value. Since e is irreducible, e; is not a type abstraction.
Then e; has a polymorphic type which is an application to
types. Therefore e is a value.

case e is e; e By the typing rules, the normal derivation
ends in a use of A;\I’*F'_e&;g;i;leﬁf;””:". Hence I e :
o — o’ and - ey : 0. By induction hypothesis, e; is value
or Je.e; — €], e is value or Jeh.eo — €h. If g or ey
is not a value, we would have e — €} e; or e — e; €.
Suppose both e; and es are values. Since e; has an arrow,
it has to be a type abstraction. Say e is Az € ¢’.e3 and e
is some value v. Then e = (Ax € 0’.e3)v — e3[v/x]

case e is Aa : k.eq;: By the typing rules, the derivation
ends in Aﬁﬁﬁff;@gﬁo Therefore, - e; : o. Since
type abstraction is an evaluation context, e; is irreducible.
Hence, by induction hypothesis, e; is a value and e is also
a value.

Preservation If -;-;-Fe:ocand e € then ;- e : o

Proof. The induction hypothesis is strengthened to: If
A;U:;T'Fe:ocandd : A; U and v : T, and vo(e) —
~vd(e') then A; ;T +— €’ : 0. Since evaluation contexts
preserve typing, it suffices to consider only the reducible
expressions.

case e is (Az:o.eq)v: Then ¢’ is ej[v/z], The typing
derivation of e : 0 must look like

% Fov:ol

F(Azioe)v:o

we need to show that ej[v/x] : o using the facts that z :

o' ey :oandF v : o', This is proved by the substitution
lemma.

case e is ejey: According to the typing rules, we must
have - e : 0/ — o and - es : ¢’ for some type o’.

If ey is reducible. Because the typing derivation for e;
is a subderivation of the typing derivation, by induction
hypothesis, e; — ¢} also preserves type. So we know
F e} : ¢/ — o and therefore ¢/ = €}es has the desired
type o. The proof is the same when e, is reducible, where
we would have ¢/ = ejél, : 0.

case e is (Aa:k.eq)[r]: Then €’ is e1[r/a]. From the
typing derivation for - e : o, we have - Aa:k.eq : Vaik.o'
and o = o'[1/al.

By the type substitution lemma (If A;a:k; ;T @ e :
o then A[r/a);V[r/a;T[r/a] : e[t/a] : olr/a]), we
would have e [T/a] : ¢'[r/a]. Therefore, e’ : &

5. Conclusion

In this paper, I discuss how generalized algebraic data
types can improve the efficiency of LR parser, AVL tree
and more importantly, maintain a stronger correctness guar-
antee. Experiments show that GADTSs not only helps pro-
grammer get rid of redundant dynamic checks, but also im-
proves the speed of the program. Moreover, the code is safe
and well-typed. In short, this project is a good illustration
of the new expressiveness offered by generalized algebraic
data types.

References

[1] J. Cheney and R. Hinze. First-class phantom types. Technical
report, Cornell University, 2003.

[2] D. Leijen and E. Meijer. Domain specific embedded com-
pilers. In ACM Sigplan Notices, volume 35, pages 109-122.
ACM, 1999.

[3] F. Pottier and Y. Régis-Gianas. Towards efficient, typed Ir
parsers. Electronic Notes in Theoretical Computer Science,
148(2):155-180, 2006.

[4] B. Vaugon. A new implementation of ocaml formats based on
gadts, 2013.

[5] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. In ACM SIGPLAN Notices, volume 38, pages
224-235. ACM, 2003.

