
Applications of Generalized Algebraic Data Types in OCaml

Junjie Ke
Department of Computer Science

Stanford University
junjiek@stanford.edu

Abstract

The introduction of generalized algebraic data types
(GADTs) makes it syntactically possible to constrain type
parameters for the return type of the constructors of a
data type, which results in more efficient compilation, bet-
ter memory representation and higher performance. In this
project, I look into various applications of GADTs in or-
der to understand its usage and benefits. In particular, I
use GADTs in OCaml for implementing a lambda calculus-
like language, an efficient, well-typed LR parser and an ef-
ficient AVL tree. Results show that the GADTs LR parser
can be well-typed, efficient without runtime checks and that
the GADTs AVL tree is almost twice as efficient as the tra-
ditional non-GADTs implementations.

1. Introduction
Generalized algebraic data types, or GADTs, is a way to

restrict the return types of constructors for providing a vari-
ety of non-regular types. Previously, it’s sometimes hard for
the compiler to figure out the return types for each branch of
pattern matching which results in valid but non-typecheck
codes. GADTs overcomes the limitation through an explicit
local specification of the typing context in each branch.

Appropriate use of GADTs allows the typechecker to
know more about the valid states of the program which can
be verified during compilation instead of runtime. More-
over, GADTs allow the programmer to track more informa-
tion about their datatypes which make it possible to write
safer, well-typed and more efficient code. As a result,
both existing paradigms (e.g. indexed lists) and previously
uncheckable paradigms (e.g. typed printf) can be improved.

In this project, I investigate three different applications
of GADTs in order to gain a better understanding of its us-
age, performance and benefits of using them.

Firstly, I familiarize myself with GADTs in OCaml
by implementing a lambda-calculus like language in both
GADTs and non-GADTs way. This is a canonical exam-
ple to demonstrate how generalized algebraic data types can

improve the efficiency and expressiveness of the program.
Secondly, I build a well-typed GADTs LR parser in [3]

as well as its optimized variant. Compared to the non-
GADTs version, the GADTs LR parser successfully get rid
of redundant runtime check while remaining well-typed and
improving the performance.

In order to have a better understanding of GADTs’ im-
pact on the performance of real-world applications, I choose
to re-implement a classic data structure, the AVL tree, using
GADTs. I compare the performance between non-GADTs
and GADTs AVL tree, showing that the GADTs implemen-
tation can improve the insertion speed by ×1.7.

Lastly, I formalize the notion of GADTs in a lambda cal-
culus type system and establish the type soundness of the
type system.

In section 2, I describe related works on the GADTs
theory and real-world applications. In section 3, I would
present the design and techniques of the GADTs applica-
tions I implement. In section 4, I would present the ex-
periment results as well as the formal semantics for using
GADTs in the lambda calculus and a proof of progress,
preservation.

2. Related Works

2.1. GADTs Theory

Generalized algebraic data types were introduced by Xi,
Chen and Chen under the name guarded recursive datatype
constructors [5]. A guarded recursive datatype is a datatype
with local (i.e. existentially quantified) type variables as-
sociated with each data constructor. Each type argument
for constructing the datatype can be specialized within each
datatype case. They formalized the type theory of GADTs
by introducing an explicitly typed calculus λ2,Gµ language
and also an elaboration process from an implicitly typed
source language to λ2,Gµ for supporting unobstrusive pro-
gramming.

Independently, Cheney and Hinze formulated a very sim-
ilar system named as first-class phantom types [1]. Phantom
types, first introduced by Leijen and Meijer [2] to embed

1

domain specific languages into Haskell type safely, are pa-
rameterized types that do not use their type arguments at
runtime. Instead, the arguments are only checked statically
at compile time. However, the original phantom type en-
codings can only enforce type constraints when construct-
ing values, but not when decomposing a value. Cheney and
Hinze filled the gap by putting the formerly unused type
variables in type equations to refine the argument types.
They showed that their first-class phantom types can be
used to define type representations and generic functions in
a more efficient and more expressive way.

2.2. GADTs Applications

More recently, generalized algebraic data types have
been put to a large variety of uses. Those use cases demon-
strate that GADTs enables functional programmers to code
any dependently-typed program by using some simple en-
coding tricks.

Well-typed Parsers
Parsing is a classic and extremely well-studied topic in

programming language. The most straightforward way to
showcase the expressiveness and efficiency of GADTs is
writing a fast and type-safe parser which does not require
values to carry run-time tags. Pottier and Regis-Gianas [3]
showed that, for a fixed LR(1) automaton, the inductive in-
variant that describes the stack and guarantees safety can
be encoded as GADTs. In addition to a safety guarantee,
this approach has better performance than non-GADTs ML
implementation because it gets rid of redundant tags and dy-
namic checks (e.g. stack cells must be redundantly tagged
with nil or cons). However, Pottier et al. mainly focused on
the theoretical safety guarantees and did not report any per-
formance figures. In this project, I would put the effort in
implementing both the GADTs and non-GADTs LR parsers
using OCaml as well as running performance comparison
experiments.

More Efficient Functions
With the power of GADTs, it is possible to re-implement

real-world applications in a more efficient and type-safe
form. For example, Vaugon [4] proposed to use GADTs in-
stead of strings to represent printf/scanf formats in OCaml,
which not only improves the performance but also fixes po-
tential bugs and stabilizes the code. This new implementa-
tion of formats has a positive impact on OCaml community
and is a real usage of GADTs to elegantly solve real-world
problems.

However, since GADTs is relatively new to OCaml pro-
grammers and the syntax is somewhat complicated at first
glance, there is little information and resources in how peo-
ple utilize GADTs in building and improving real-world ap-
plications. In order to understand the potential benefit of
using GADTs, I want to use GADTs to improve a classic
data structure, AVL tree, and compare the performance.

3. Methods
In this section, I describe the design and techniques of

three GADTs applications I look into.

3.1. Simple Lambda Calculus

A canonical example of demonstrating how to use
GADTs is re-implementing a simple lambda calculus lan-
guage.

3.1.1 Non-GADTs Approach

Without GADTs, we can define the language as below:

1 type t y p = | Boolean | I n t e g e r
2 | Arrow of t y p ∗ t y p
3 type exp = | And of exp ∗ exp
4 | Add of exp ∗ exp
5 | App of exp ∗ exp
6 | Lam of s t r i n g ∗ t y p ∗ exp
7 | Var of s t r i n g
8 | I n t of i n t
9 | Bool of boo l

10

11 l e t e1=Add (I n t 0 , Add (I n t 1 , I n t 2))
12 l e t e2=And (Bool f a l s e , Bool t r u e)
13 l e t e3=App (Lam(” x ” , I n t e g e r ,
14 Add (Var ” x ” , Var ” x ”)) , I n t 1)
15 l e t e4=Add (I n t 1 , Bool t r u e) (∗ Error ∗)

In this language, e1, e2, e3 are syntactically correct expres-
sions, but e2 should be invalid because we want And to be
applied to two Bool and Add to be applied to two Int.
Therefore, when writing the eval function, we need to
check the types of the operants and throw error with un-
expected types.

1 l e t rec e v a l env e =
2 match e with
3 | Add (e1 , e2) −>
4 l e t v1 = e v a l env e1 in
5 l e t v2 = e v a l env e2 in (
6 match (v1 , v2) with
7 | (I n t e g e r i1 , I n t e g e r i 2)
8 −> I n t e g e r (i 1 + i 2)
9 | −> f a i l w i t h ” I n t e g e r Type E r r o r ”

10)
11

3.1.2 GADTs Approach

The problem with non-GADTs is that, since both Int and
Bool are of type exp, we don’t know how to distinguish
the two before run time. GADTs solves the probelm by
restricting the type parameter of a type constructor.

1 type (,) exp =
2 | I n t : i n t −> (’ e , i n t) exp
3 | Bool : boo l −> (’ e , boo l) exp
4 | Add : (’ e , i n t) exp ∗ (’ e , i n t) exp
5 −> (’ e , i n t) exp
6 | And : (’ e , boo l) exp ∗ (’ e , boo l) exp

2

7 −> (’ e , boo l) exp
8 | App : (’ e , (’ a−>’b)) exp ∗ (’ e , ’ a) exp
9 −> (’ e , ’ b) exp

10 | Lam : ((’ a ∗ ’ e) , ’ b) exp
11 −> (’ e , (’ a −> ’ b)) exp
12 | Var0 : ((’ a ∗ ’ e) , ’ a) exp
13 | VarS : (’ e , ’ a) exp −> ((’ b∗ ’ e) , ’ a) exp

By simply listing the type signatures of all the constructors,
we can let the compiler figure out the correct arguments for
us. For example, when an Add type appears, we know that
the two arguments would be an integer instead of boolean.

1 l e t rec e v a l : type e t . e−>(e , t) exp−>t
2 = fun env e −>
3 match e with
4 | Add (e1 , e2) −>
5 l e t v1 = e v a l env e1 in
6 l e t v2 = e v a l env e2 in
7 v1 + v2
8

We can implement an evaluation function as above that
takes advantage of the type marker. Notice that, this time,
we don’t need to check the types of e1 and e2 when evalu-
ating Add.

3.2. Typed LR Parser

In this section I will discuss the setup of LR parser and
show how the GADTs design can improve the non-GADTs
approach.

3.2.1 Grammar Pottier

(1) E{x} + T{y} ! E{x + y}
(2) T{x} ! E{x}
(3) T{x} * F{y} ! T{x £ y}
(4) F{x} ! T{x}
(5) (E{x}) ! F{x}
(6) int{x} ! F{x}

Fig. 1. A simple grammar with semantic actions

assume that the underlying lexical analyzer associates semantic values of type
int with the token int, and semantic values of type unit with the tokens +,
*, (, and). The grammar’s nonterminal symbols are E, T , and F , which re-
spectively stand for expression, term, and factor. The grammar’s start symbol
is E.

There are six productions, numbered (1) to (6). Roughly speaking, each
production is of the form S1 . . . Sn ! S, where S1, . . . , Sn are (terminal or non-
terminal) symbols and S is a nonterminal symbol. However, we are interested
not only in determining whether some input string belongs to the language
defined by this grammar, but also in exploiting this fact to convert the input
string into a new form, called a semantic value. Thus, each production is
decorated with a semantic action, that is, an ML expression, which specifies
how to compute a semantic value. More precisely, every Si must be followed
by a distinct variable xi, while S must be followed by an ML expression e.
The variables xi and the expression e are surrounded with braces. We allow
Si alone as syntactic sugar for Si{xi}, where xi does not occur elsewhere in
the production. The variables x1, . . . , xn are bound within e.

Often, semantic values are abstract syntax trees. Here, for the sake of
simplicity, we prefer to associate semantic values of type int with the symbols
E, T , and F . As a result, the decorated grammar in Figure 1 specifies a
simple evaluator for arithmetic expressions. For instance, its first production
specifies that an expression E that evaluates to x, followed by the token +,
followed by a term T that evaluates to y, together form an expression E that
evaluates to x + y.

3 An LR parser for the sample grammar

We now describe an LR parser for the sample grammar. This parser, also taken
from Aho et al. [1], is presented as a finite deterministic pushdown automaton.
The automaton consumes an input stream consisting of the tokens int, +, *,
(, and), and of the pseudo-token $, which signals the end of the stream.
It maintains a current state. States are integers in the range {0, . . . , 11}. It
also maintains a current stack. Stacks are of the form æ ::= ≤ | æsv, where

4

Figure 1: LR parser grammar with semantic actions

As listed in Figure 1, the grammar’s tokens are int, +, *, (
and). The input stream ends by the token $. The grammar’s
nonterminal symbols are E, T and F , which represents ex-
pression, term and factor. E is also the starting symbol.

Figure 2 shows the finite deterministic pushdown au-
tomation for the grammar. It maintains a current state
si, i ∈ 0...11 and a operator stack σ ::= ε|σsv where ε
is the empty stack and σsv denotes pushing new state s and
value v on to the stack.

Pottier

State action goto

int + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Fig. 2. Analysis tables for the expression grammar

s ranges over states and v ranges over semantic values. ≤ denotes the empty
stack, while æsv denotes the stack obtained by pushing s and v on top of the
stack æ.

Initially, the input stream consists of the tokens that must be parsed,
followed by the pseudo-token $; the current state is 0; and the stack is empty.

The automaton’s transitions are defined by two tables, action and goto,
which appear in Figure 2. At every step, the automaton consults the current
state, as well as the current input token, that is, the first token in the cur-
rent input stream. Together, they determine an entry in the two-dimensional
action table, which is interpreted as follows.

(i) If the entry reads “shift s” (written “ss” in Figure 2), where s is a state,
then the current state and the current input token’s semantic value are
pushed onto the stack; one input token is discarded; and s becomes the
current state.

(ii) If the entry reads “reduce k” (“rk” in Figure 2), where the grammar’s k-
th production is S1{x1} . . . Sn{xn} ! S{e}, then the current stack must
be of the form æs1v1 . . . snvn. The ML expression e[v1/x1, . . . , vn/xn] is
evaluated, which must succeed and yield a new semantic value v. To-
gether, the state s1 and the nonterminal symbol S determine an entry
in the two-dimensional goto table, which must contain a state s. Then,
æs1v becomes the current stack, and s becomes the current state. No
input token is discarded.

(iii) If the entry reads “accept” (“acc” in Figure 2), then the current stack
must be of the form æsv. The automaton successfully stops and returns
v.

5

Figure 2: Pushdown automation table for the expression
grammar

3.2.2 Non-GADTs LR Parser

As a simple ML implementation of the automation, we can
encode the stack as follows.

Pottier

is, as another algebraic data type. But doing so would introduce a redundancy,
as both stack cells and semantic values would carry tags.

To avoid this redundancy, we follow a slightly more elaborate approach.
We merge the proposed definitions for stack and semantic value into a single
definition, so that only stack cells are tagged:

type stack =
| SEmpty
| SP of stack £ state
| SS of stack £ state
| SL of stack £ state
| SR of stack £ state
| SI of stack £ state £ int
| SE of stack £ state £ int
| ST of stack £ state £ int
| SF of stack £ state £ int

(In the names chosen for the data constructors, P, S, L, R, and I are short
for Plus, Star, Left, Right, and Int.) By examining the tag carried by a value
of type stack, we can now tell not only whether it represents an empty or
nonempty stack, but also, in the latter case, what symbol its top stack cell
is associated with. This, in turn, allows us to tell what type of semantic
value that cell contains. As a slight optimization, we choose not to represent
semantic values of type unit. Thus, the stack cells associated with the symbols
+, *, (, and) contain only a state, as opposed to a pair of a state and the unit
semantic value. No stack cells are ever associated with the token $, because, by
construction, the automaton never takes a shift transition upon encountering
this token.

To sum up, every value of type stack carries a tag, which must be examined
before the actual contents of the stack can be accessed. If, thanks to external
reasoning, the tag is known beforehand, then this dynamic check is redundant.
This approach, where stacks and/or semantic values are tagged, is adopted by
ML-Yacc and by happy (without the -c flag).

The parser’s central function, run, implements the pushdown automaton.
It is parameterized by the automaton’s current state and stack. It may termi-
nate either by raising the exception SyntaxError, which means that the input
stream does not conform to the grammar, or by returning an integer seman-
tic value for the arithmetic expression E that was parsed. The side-effecting
functions peek and discard are used to manipulate the input stream, but the
code is otherwise purely functional. This turns out to be important in §6 and
§7, where the types of the current state and stack evolve over time.

The definition of run appears in Figure 3. The function examines the cur-
rent state s as well as the current input token peek() (line 5), and determines
which action should be taken. There are many cases, two of which are shown.

When the current state is 9 and the next input token is * (line 7), the

7

P, S, L, R and I are short for Plus, Star, Left bracket,
Right bracket and Int. The type stack carries a tag. The
pushdown automation is parameterized by the current state
and stack. It may end up returning the final integer result or
raising a Syntax Error exception.

For example, if we’re currently at state 9 and the next to-
ken is +. According to Figure 2 we want to reduce by gram-
mar rule (1) E{x}+T{y} → E{x+ y}. The syntactically
correct stack must look like {ST, SP, SE}. We can get the
operators x, y from the stack, produce a new semantic value
x+ y and a new stack cell.

This non-GADTs approach models the stack as arbitrary
sequences of (state, value) pairs. We can not detect syn-
tax error without actually running the program because we
know nothing about what’s going to be on the stack. There-
fore, in the parser evaluation code, we need to use ”match s
with” everywhere to dynamically check the stack and raise
error when the stack is invalid. We also need to write a lot
of error checking code to ensure the matching constructs are
exhaustive. This is a waste of time and code because by the

3

design of the automation rules, the valid stacks that do arise
at runtime are not arbitrary.

In the next section, I’ll show how we can make use of
GADTs to get rid of superfluous runtime checks.

3.2.3 GADTs LR Parser

The idea is to associate the state with the expected stack
shape. To do so, we associate the type of state with a type
variable αwhich is also the type of the current stack. Figure
3 shows the encoding. Pottier

1 (§ Types for stack cells . §)
2 type empty = SEmpty
3 type Æ cP = SP of Æ£ Æ state
4 type Æ cS = SS of Æ£ Æ state
5 type Æ cL = SL of Æ£ Æ state
6 type Æ cR = SR of Æ£ Æ state
7 type Æ cI = SI of Æ£ Æ state £ int
8 type Æ cE = SE of Æ£ Æ state £ int
9 type Æ cT = ST of Æ£ Æ state £ int

10 type Æ cF = SF of Æ£ Æ state £ int
11

12 (§ The type of states . §)
13 type state : ? ! ? where
14 | S0 : empty state
15 | S1 : empty cE state
16 | S2 : 8Æ.Æ cT state
17 | S3 : 8Æ.Æ cF state
18 | S4 : 8Æ.Æ cL state
19 | S5 : 8Æ.Æ cI state
20 | S6 : 8Æ.Æ cE cP state
21 | S7 : 8Æ.Æ cT cS state
22 | S8 : 8Æ.Æ cL cE state
23 | S9 : 8Æ.Æ cE cP cT state
24 | S10 : 8Æ.Æ cT cS cF state
25 | S11 : 8Æ.Æ cL cE cR state

Fig. 5. Encoding part of the invariant into types

stack cells are no longer tagged. Stacks are still linked sequences of cells, just
like standard linked lists. Each cell can be a tuple of zero, two, or three
components, yet no tag is stored inside the cell to distinguish between these
cases. Instead, the automaton’s current state will be used, when necessary,
to predict the shape of the top stack cells. Thus, the automaton’s state and
stack are now coordinated data structures in the sense of Ringenburg and
Grossman [20].

6.2 Types for states

We now come to the definition of the parameterized type Æ state (Figure 5,
lines 13–25). The definition is in pseudo-Objective Caml syntax, since Objec-
tive Caml does not yet offer generalized algebraic data types. Line 13 states
that state has kind ? ! ?, that is, state is now a unary algebraic data type
constructor. Lines 14–25 specify its data constructors, all of which remain
nullary, together with their type scheme.

The novelty lies in the way the new type parameter is constrained so as to

13

Figure 3: GADTs LR parser stack and state encoding

The generalized state type allows the compiler to check
the dependency between the current state and current stack.
For example, if we are at state S9, matching the stack
with ST (SP (SE(stack, s, x),), , y) would always suc-
ceed because the compiler knows the shape of the state.

The reduce action now doesn’t need to perform runtime
check and the parser is well-typed.

3.2.4 GADTs LR Parser Optimization

As mentioned in [3], we can further optimize the code by
associating the specific state number with the stack. The
reason is that the stacks that do arise at runtime are not ran-
dom but range over a strict subset, which is given in Fig-
ure4. For example, when the automation is in state 5, then
we know that the top cell holds a state in subset {0, 4, 6,
7} and a semantic value int. The optimized stack and state
encodings are shown in Figure5

Pottier

Stack shape State

≤ 0

≤ {0} E 1

æ {0, 4} T 2

æ {0, 4, 6} F 3

æ {0, 4, 6, 7} (4

æ {0, 4, 6, 7} int 5

æ {0, 4} E {1, 8} + 6

æ {0, 4, 6} T {2, 9} * 7

æ {0, 4, 6, 7} ({4} E 8

æ {0, 4} E {1, 8} + {6} T 9

æ {0, 4, 6} T {2, 9} * {7} F 10

æ {0, 4, 6, 7} ({4} E {8}) 11

Fig. 4. The automaton’s invariant

in parsers produced by happy -a, ML-Yacc, or ocamlyacc. This approach,
studied in a number of earlier works [11,5,2], has the disadvantage of leading
to greater code size. Its key advantage, as far as we are concerned, is to make
the code more amenable to analysis by a general-purpose type system. A
secondary advantage is to remove the interpretation overhead and to enable
extra optimizations based on code specialization (§8).

Second, we represent the stack as a purely functional data structure, that
is, a linked list of immutable, heap-allocated cells. This is somewhat inef-
ficient, since a pair of mutable, extensible arrays would do—one for states,
one for semantic values. However, an array of semantic values would form
a mutable, heterogeneous data structure, whose entries can change type over
time. ML’s type system does not support such data structures. At the very
least, a notion of linearity would be required in order to guarantee that no
pointers to deallocated stack cells are kept around and dereferenced. Thus,
our choice of an immutable data structure is imposed by our somewhat näıve
type discipline. Designing type systems that support mutable stacks is an
active area of research; see, for example, Jia et al.’s recent work [6].

5 Understanding the automaton’s invariant

We asserted earlier that, by design of the action and goto tables, when a
“reduce” action is taken, the contents of the top few stack cells are known and
may be accessed without a dynamic check. Before modifying the code to take
advantage of this fact, we must understand why this is so.

The reason is simple. Although stacks were defined as arbitrary sequences
of pairs of a state and a semantic value, the stacks that do arise at runtime
are not arbitrary: they range over a strict subset of that space, which is

10

Figure 4: The LR parser automation invariantPottier

1 type empty = SEmpty
2 type (Æ, Ω) cP = SP of Æ£ (Æ, Ω) state
3 type (Æ, Ω) cS = SS of Æ£ (Æ, Ω) state
4 type (Æ, Ω) cL = SL of Æ£ (Æ, Ω) state
5 type (Æ, Ω) cR = SR of Æ£ (Æ, Ω) state
6 type (Æ, Ω) cI = SI of Æ£ (Æ, Ω) state £ int
7 type (Æ, Ω) cE = SE of Æ£ (Æ, Ω) state £ int
8 type (Æ, Ω) cT = ST of Æ£ (Æ, Ω) state £ int
9 type (Æ, Ω) cF = SF of Æ£ (Æ, Ω) state £ int

10

11 type state : (?, row) ! ? where
12 | S0 : (empty, {0}) state
13 | S1 : 8∞̄.((empty, h0i) cE, {1}) state
14 | S2 : 8Æ∞̄.((Æ, h0, 4i) cT, {2}) state
15 | S3 : 8Æ∞̄.((Æ, h0, 4, 6i) cF, {3}) state
16 | S4 : 8Æ∞̄.((Æ, h0, 4, 6, 7i) cL, {4}) state
17 | S5 : 8Æ∞̄.((Æ, h0, 4, 6, 7i) cI, {5}) state
18 | S6 : 8Æ∞̄.(((Æ, h0, 4i) cE, h1, 8i) cP, {6}) state
19 | S7 : 8Æ∞̄.(((Æ, h0, 4, 6i) cT, h2, 9i) cS, {7}) state
20 | S8 : 8Æ∞̄.(((Æ, h0, 4, 6, 7i) cL, h4i) cE, {8}) state
21 | S9 : 8Æ∞̄.((((Æ, h0, 4i) cE, h1, 8i) cP, h6i) cT, {9}) state
22 | S10 : 8Æ∞̄.((((Æ, h0, 4, 6i) cT, h2, 9i) cS, h7i) cF, {10}) state
23 | S11 : 8Æ∞̄.((((Æ, h0, 4, 6, 7i) cL, h4i) cE, h8i) cR, {11}) state
24

25 val run : 8ÆΩ.(Æ, Ω) state ! Æ ! int
26 val gotoE : 8Æ∞̄.(Æ, Ω) state ! (Æ, Ω) cE ! int
27 where Ω = h0, 4i

Fig. 7. Encoding the entire invariant into types

that the row encoding is used, but our results are equally valid with the more
näıve product encoding.

7.2 Types for states

Equipped with notation for encoding sets as types, we can now provide a new
definition of the type state (Figure 7). There are two changes with respect to
the previous definition (Figure 5).

First, in every line, the second parameter to state is constrained in a
way that reflects the state’s identity in an exact manner. For instance, S0 is
given a type of the form (. . . , {0}) state (line 12); S1 is given a type of the
form (. . . , {1}) state (line 13); and so on. As a result, a type of the form
(ø, {0}) state can be inhabited only by S0; a type of the form (ø, {1}) state
can be inhabited only by S1; and so on. This technique is related to singleton
types.

19

Figure 5: Optimized GADTs LR parser stack and state en-
coding

3.2.5 Comparison Experiment Setup

I implement all three versions of LR parser: non-GADTs,
GADTs without optimization, GADTs with optimization.
The evaluation programs for those three parsers are almost
identical. Only the type annotations carried by the function
changes. Therefore, it will be a fair comparison between
GADTs and non-GADTs.

Firstly I compare the verboseness and number of ”non-
exhaustive” warnings of three approaches. Then I randomly
generate expressions with around 4000, 5000, 6000, 6500,
7600, 9000 tokens (Int, Add, Multiply, Left/Right Brack-
ets). The tokens and the integer values are randomly cho-
sen. For each expression I run each of the program 10 times
and record the average running time. The comparison re-

4

sults are shown in section 4.1.

3.3. AVL Tree

In this section, I’ll discuss how to use GADTs to improve
the performance of the classic AVL Tree.

3.3.1 Non-GADTs AVL Tree

The most important feature of an AVL is that the height
of left subtree and right subtree differs at most by 1. To
maintain this feature, we need to keep track of the balance
factor (height of right subtree minus height of left subtree)
whenever we insert a node.

In a typical non-GADTs implementation, each node is
associated with the height. Then in each insertion, we com-
pute the balance factor and if imbalanced, we do the re-
balancing by rotating left or rotating right.

1 type t = Leaf
2 | Node of t ∗ i n t ∗ t ∗ h e i g h t
3 l e t h e i g h t = f u n c t i o n
4 | Leaf −> 0
5 | Node (, , , h) −> h

In this non-GADTs implementation, we assume that the
height of left and right subtree can be any non-negative in-
teger. However, since we are re-balancing the AVL tree for
each insertion, we know that there are only three cases for
the height of left/right subtree: hL = hR − 1, hL = hR or
hL = hR + 1.

We can utilize this information to do smarter re-
balancing without frequently computing the difference of
the heights.

3.3.2 GADTs AVL Tree

Using GADTs, we can define the nodes in AVL tree as fol-
lows:

1 type z = Z : z
2 type ’ d s = S : ’ d −> ’ d s
3 type (, ,) d i f f =
4 | Less : (’ d , ’ d s , ’ d s) d i f f
5 | Same : (’ d , ’d , ’ d) d i f f
6 | More : (’ d s , ’d , ’ d s) d i f f
7

8 type (’ a , ’ d) t r e e =
9 | Empty : (’ a , z) t r e e

10 | Tree : (’ a , ’m) t r e e ∗ ’ a ∗ (’ a , ’ n) t r e e
11 ∗ (’m, ’ n , ’ o) d i f f −> (’ a , ’ o s) t r e e

In line 8, ’a is the type of the element (int, bool etc), ’d is
the depth of the tree which is represented by a sequence S.
With the new depth representation, we can easily define the
three cases hL = hR − 1, hL = hR or hL = hR + 1 as
Less, Same and More respectively (line 4-6). The three
arguments for diff represents height for left subtree, right
subtree and current node. Lastly, for each tree node, we
maintain a diff for left/right subtree height difference.

1 l e t rec run : (∗ F u n c t i o n s i g n a t u r e ∗) =
2 fun s l s t a c k −>
3 match s , (peek l) with
4 | . . .
5 | S2 , KPlus −>
6 l e t ST (s t a c k , s , x) = s t a c k in
7 gotoE s l (SE (s t a c k , s , x))
8 | S2 , KStar −>
9 run S7 (d i s c a r d l) (SS (s t a c k , s))

10 | . . .

Figure 6: Implementation for the LR Parser Pushdown Au-
tomation

Thanks to GADTs, during insertion, we can have a good
understanding of how the local tree looks like without cal-
culating the balancing factor. This means we can directly
match on the diff for each node and do smarter rotation
based on the diff for left and right subtrees.

3.3.3 Comparison Experiment Setup

I implement the insertion function for both non-GADTs
AVL and GADTs AVL. To compare the performance, I
generate lists of 1000, 10000, 100000, 150000, 200000,
250000 random integers and insert them into the AVL tree. I
run each setup 10 times and the average total insertion time
is reported. The results are listed in section 4.2.

4. Results
In this section, I’ll report the experiment results as well

as present the formal semantics for using GADTs in the
lambda calculus and a proof of progress and preservation.

4.1. LR Parser Performance Comparison

I compare the performance of non-GADTs, GATDs, op-
timized GATDs LR parsers. To make this a fair comparison,
the function for running the automation is almost the same
except for the function type signatures. The evaluation code
looks like Figure 6.

4.1.1 Verbosity

Firstly, I compare the number of ”non-exhaustive” match
warnings in three programs.

In non-GADTs LR parser, whenever we want to use let
to match the shape of the stack (like line 6 in Figure 6),
the compiler will complain that ”the pattern-matching is not
exhaustive”.

In fact, using the same block of code, non-GADTs
method generates 26 warnings when compiling. GADTs
without optimization generates only 3 non-exhaustive warn-
ings in the gotoE, gotoT, gotoF functions because we
do not know the states that are associated with E, T and F

5

as listed in Figure 4. With the optimization mentioned in
section 3.2.4, there will be 0 warning, which means all the
pattern-matchings are exhaustive.

This shows that GADTs is able to help programmers get
rid of many superfluous runtime checks and unnecessary
warnings. By associating the stack cell with type variables,
we can keep track of the stack’s structure by just examining
the current state. As a result, the compiler knows that the
”match” and ”let” cases could not fail.

Thanks to the new type information, those formerly non-
exhaustive pattern matching construct has become exhaus-
tive and this will allow the compiler to produce better ma-
chine code without a runtime check, even though the source
code is almost the same. The GADTs method yields better
efficiency for programming, and more importantly, stronger
correctness is guaranteed.

4.1.2 Performance

To compare the runtime performance, I randomly generate
lists of expressions with around 4000, 5000, 6000, 6500,
7600, 9000 tokens (Int, Add, Multiply, Left/Right Brack-
ets). The average running time for non-GADTs, GADTs
and GADTs with optimization are shown in Figure 7.

4000 5000 6000 7000 8000 9000
Number of elements in the stack

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

A
v
e
ra

g
e
 T

o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s)

GADTs
Non-GADTs
GADTs-opt

Figure 7: Performance Comparison Between non-GADTs
and GADTs LR Parser

From the graph we can see that when the number of
tokens is large, GADTs methods outperform non-GADTs
methods. The speed up is around ×1.5 from non-GADTs
to GADTs. The optimized GADTs methods is able to run
even faster, although the gap between optimized and non-
optimized GADTs is small.

4.2. AVL Tree Performance Comparison

In this section, I will show the results for comparing
the insertion performance of GADTs and non-GADTs AVL

0 50000 100000 150000 200000 250000
Number of Inserted Elements

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 T

o
ta

l
In

se
rt

io
n
 T

im
e
 (

s)

GADTs
Non-GADTs

Figure 8: Performance Comparison Between non-GADTs
and GADTs AVL Tree Node Insertion

trees. I generate lists of 1000, 10000, 100000, 150000,
200000, 250000 random integers and insert them into those
AVL trees. The average total runtime is shown in Figure 8.

From the graph we can see that GADTs consistently out-
performs non-GADTs AVL tree. With the increase in num-
ber of inserted elements, the gap between GADTs and non-
GADTs is widening. The average speedup is around ×1.7.

As discussed in section 3.3.2, the reason why GADTs
is able to run much faster is that we can avoid computing
the balance factor for each insertion. GADTs enables us to
associate diff with every node and diff is exactly the
information we need to know while re-balancing.

This result shows that GADTs method can be very pow-
erful in improving the performance of real-world applica-
tions, especially for large-scale systems.

4.3. Semantics of GADTs in the lambda calculus

In this section I present the formal semantics of using
GADTs for explicitly typed lambda calculus.

6

4.3.1 Syntax

types σ ::= τ | Int | σ1 × σ2 | σ1 → σ2 |
T (~σ) | ∀α:κ.σ

expressions e ::= i | x | λx:σ.e | e[τ] | 〈e1, e2〉 |
e1e2 | fst(e) | snd(e) |
Λα:κ.e | C[τ]e

values v ::= i | λx:σ.e | 〈e1, e2〉 |
Λα:κ.v | C[τ]e

kinds κ ::= ? | κ→ κ

constructors τ ::= α | τ1 τ2 | Int | → | × | T
equations ε ::= τ1 ≡ τ2
type contexts ∆ ::= · |∆, α:κ
expression contexts Γ ::= · | Γ, x:σ
equation contexts Ψ ::= · | Ψ, ε:κ
substitutions Θ ::= · | Θ, α ≡ τ
datatype contexts Σ ::= · | Σ; type T α:κ = ΣT

datatype signatures ΣT ::= · | ΣT | ∃β:κ.Cσ with ε:κ

4.3.2 Typing Rules

∆; Ψ; Λ ` e : σ

∆; Ψ; Γ ` i : Int ∆; Ψ; Γ ` x : Γ(x)

∆; Ψ; Γ, x:σ ` e : σ′

∆; Ψ; Γ ` λx:σ.e : σ → σ′

∆; Ψ; Γ ` e : σ1 ∆; Ψ ` σ1 ≡ σ2

∆; Ψ; Γ ` e : σ2

∆; Ψ; Γ ` e1 : σ → σ′ ∆; Ψ; Γ ` e2 : σ

∆; Ψ; Γ ` e1e2 : σ′

∆, α:κ; Ψ; Γ ` e : σ

∆; Ψ; Γ ` Λα:κ.e : ∀α:κ.σ
∆; Ψ; Γ ` e : ∀α:κ ∆ ` τ : κ

∆; Ψ; Γ ` e[τ] : σ[τ/α]

∆; Ψ; Γ ` e1 : σ1 ∆; Ψ; Γ ` e2 : σ2

∆; Ψ; Γ ` 〈e1, e2〉 : σ1 × σ2

∆; Ψ; Γ ` e : σ1 × σ2

∆; Ψ; Γ ` fst(e) : σ1

∆; Ψ; Γ ` e : σ1 × σ2

∆; Ψ; Γ ` snd(e) : σ2

ΣT.Cα=∃β:κ.Cσ with ε:κ′

∆; Ψ ` εi[τ ′/α, τ/β] : κ′i
∆;Ψ;Γ`ei:σi[τ ′/α,τ/β]

∆ ` τi : κi
∆; Ψ; Γ ` C[τ]e : Tτ ′

4.3.3 Type Soundness

Progress If ·; ·; · ` e : τ then either e is a value or there
exists e′ such that e 7→ e′

Proof. Let γ : Γ represent that γ is a function mapping
variables bound in Γ to values such that ·; ·; · ` γ(x) : Γ(x),
δ : ∆; Ψ represent that δ maps type variables bound in ∆ to
type constructors of appropriate kinds so that Ψ is satisfied:
· ` δ(α) : ∆(α) and ·; · ` δ(τ) ≡ τ ′ ∈ Ψ.

Let δ(σ) and γδ(e) represent the result of substituting all
type or term variables in a type σ or expression e with their
values in γ or δ.

Then the induction hypothesis is generalized to: If
δ; Ψ; Γ ` e : τ and γ : Γ, δ : ∆; Ψ then either γδ(e) is
a value or there exists e′ such that γδ(e) 7→ γδ(e′). Proof is
by induction on the derivation of ∆; Ψ; Γ ` e : σ.

case e is i or λx:σ.e1 or 〈p1, p2〉 or C[τ]e: Then e is a
value, as expected.

case e is fst(e) or snd(e): Then we can follow the typing
rules to find e→ e′

case e is x: This is not possible because we would have
` x : τ and from the empty environment we cannot assign
any type to x.

case e is e1[τ]: By the typing rules, the normal derivation
ends in a use of ∆;Ψ;Γ`e:∀α:κ ∆`τ :κ

∆;Ψ;Γ`e[τ]:σ[τ/α] . Hence, ` e1 : ∀α:κ
and ` τ : κ. Since type application is an evaluation context,
e1 is irreducible. Hence by induction hypothesis, e1 is a
value. Since e is irreducible, e1 is not a type abstraction.
Then e1 has a polymorphic type which is an application to
types. Therefore e is a value.

case e is e1e2 By the typing rules, the normal derivation
ends in a use of ∆;Ψ;Γ`e1:σ→σ′ ∆;Ψ;Γ`e2:σ

∆;Ψ;Γ`e1e2:σ′ . Hence ` e1 :

σ → σ′ and ` e2 : σ. By induction hypothesis, e1 is value
or ∃e′1.e1 → e′1, e2 is value or ∃e′2.e2 → e′2. If e1 or e2

is not a value, we would have e → e′1 e2 or e → e1 e
′
2.

Suppose both e1 and e2 are values. Since e1 has an arrow,
it has to be a type abstraction. Say e1 is λx ∈ σ′.e3 and e2

is some value v. Then e = (λx ∈ σ′.e3)v → e3[v/x]
case e is Λα : κ.e1: By the typing rules, the derivation

ends in ∆,α:κ;Ψ;Γ`e:σ
∆;Ψ;Γ`Λα:κ.e:∀α:κ.σ . Therefore, ` e1 : σ. Since

type abstraction is an evaluation context, e1 is irreducible.
Hence, by induction hypothesis, e1 is a value and e is also
a value.

Preservation If ·; ·; · ` e : σ and e 7→ e′ then ·; ·; · ` e′ : σ
Proof. The induction hypothesis is strengthened to: If

∆; Ψ; Γ ` e : σ and δ : ∆; Ψ and γ : Γ, and γδ(e) 7→
γδ(e′) then ∆; Ψ; Γ 7→ e′ : σ. Since evaluation contexts
preserve typing, it suffices to consider only the reducible
expressions.

case e is (λx:σ.e1)v: Then e′ is e1[v/x], The typing
derivation of e : σ must look like

x:τ ′`e1:σ
(λx:σ.e1):σ′→σ ` v : σ′

` (λx:σ.e1)v : σ

we need to show that e1[v/x] : σ using the facts that x :

7

σ′ ` e1 : σ and ` v : σ′. This is proved by the substitution
lemma.

case e is e1e2: According to the typing rules, we must
have ` e1 : σ′ → σ and ` e2 : σ′ for some type σ′.

If e1 is reducible. Because the typing derivation for e1

is a subderivation of the typing derivation, by induction
hypothesis, e1 7→ e′1 also preserves type. So we know
` e′1 : σ′ → σ and therefore e′ = e′1e2 has the desired
type σ. The proof is the same when e2 is reducible, where
we would have e′ = e1e

′
2 : σ.

case e is (Λα:κ.e1)[τ]: Then e′ is e1[τ/α]. From the
typing derivation for ` e : σ, we have ` Λα:κ.e1 : ∀α:κ.σ′

and σ = σ′[τ/α].
By the type substitution lemma (If ∆;α:κ; Ψ; Γ : e :

σ then ∆[τ/α]; Ψ[τ/α]; Γ[τ/α] : e[τ/α] : σ[τ/α]), we
would have e1[τ/α] : σ′[τ/α]. Therefore, e′ : σ

5. Conclusion
In this paper, I discuss how generalized algebraic data

types can improve the efficiency of LR parser, AVL tree
and more importantly, maintain a stronger correctness guar-
antee. Experiments show that GADTs not only helps pro-
grammer get rid of redundant dynamic checks, but also im-
proves the speed of the program. Moreover, the code is safe
and well-typed. In short, this project is a good illustration
of the new expressiveness offered by generalized algebraic
data types.

References
[1] J. Cheney and R. Hinze. First-class phantom types. Technical

report, Cornell University, 2003.
[2] D. Leijen and E. Meijer. Domain specific embedded com-

pilers. In ACM Sigplan Notices, volume 35, pages 109–122.
ACM, 1999.

[3] F. Pottier and Y. Régis-Gianas. Towards efficient, typed lr
parsers. Electronic Notes in Theoretical Computer Science,
148(2):155–180, 2006.

[4] B. Vaugon. A new implementation of ocaml formats based on
gadts, 2013.

[5] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. In ACM SIGPLAN Notices, volume 38, pages
224–235. ACM, 2003.

8

