
Green Threads in Rust

KEVIN ROSENDAHL
Additional Key Words and Phrases: Rust, Green Threads, Concurrency

ACM Reference format:
Kevin Rosendahl. 2017. Green Threads in Rust. 1, 1, Article 1 (Decem-
ber 2017), 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 SUMMARY
For this project, I set out to implement a green threading library
written in Rust that offered an interface as similar as possible to
std::thread. The most challenging aspect of this was interfacing
with Rust to accomplish this. Compared to writing a green threading
library in C, Rust was very difficult to convince that the implemen-
tation is legal. However, once the low level implementation was
complete, working in Rust is much better than working in straight
C.
In the end, I was able to create a working green thread library

in Rust that exposes a std::thread like interface. Along the way I
learned about Rust’s Foreign Function Interface (FFI), the underlying
representation of closures and other data types, and gained a much
stronger grasp on Rust’s compile-time and runtime checking.
I was also able to investigate abstractions that can be built on

top of green threads, and compare them to other concurrency ab-
stractions using paradigms other than green threads that attempt
to solve similar problems.

2 BACKGROUND

2.1 Threading
Among the different common concurrency paradigms, the most
popular historically is threading. Threading allows the programmer
to essentially write seperate programs that execute concurrently.
The two main types of threads are "native"/"OS" threads, and

"green" threads. "Native" or "OS" threads are maintained by the
Operating System the program is running on. These threads will
usually be multiplexed over multiple CPU cores if they are available,
and are typically preemptively scheduled by the Operating System.

Preemptive scheduling means that the program does not have to
explicitly say that it yields control over to another thread. Instead,
the Operating System itself will deschedule the thread from the core
it is running on and schedule another thread on it automatically.

"Green" threads on the other hand are not scheduled by the Oper-
ating System, but instead are scheduled by a runtime running inside
the program. This is sometimes referred to as "user level" threading
(as opposed to "kernel level" threading). Commonly, these threads
are scheduled "cooperatively."

Cooperative scheduling is the opposite of preemptive scheduling.
In a cooperative scheduling paradigm, programs must explicitly

© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

yield control from the thread, usually back into the runtime which
then decides which thread to run next.

2.2 Green Threads in the Wild
Green Threads can be found being used in a number of languages.
The usage of green threads most in vogue right now is Go’s "gor-
outine." Go implements a green threads runtime that multiplexes
goroutines over multiple CPU cores. Go’s runtime however is in
charge of scheduling the goroutines; the program does not have to
explicitly yield control.
Rust, in fact, has a history with green threads. A green threads

runtime used to be the default paradigm for Rust code. Among other
reasons (which will be addressed throughout the course of the rest
of the paper) the Rust team decided that having a systems language
use a green threads runtime did not quite align. Thus, they decided
to abandon the green thread runtime and to switch to using native
threads.

2.3 Event Loops
Another concurrency pattern that is becoming increasingly popular
in mainstream programming languages is the event loop. Event
loops have events registered with them, and loop through all of
the events, handling any that have notified the loop that they are
ready to be handled. Once all events that had triggered for that loop
have been handled, the event loop begins again, handling newly
triggered events.

One popular example of an eventloop is libuv, uponwhichnode.js
is built. Rust also has a popular event loop librarymio, upon which
the tokio components are built.

2.4 Async I/O, Callbacks, Futures, Promises, and
Async/Await

Event loops are commonly employed to handle running many dif-
ferent tasks that interact with asynchronous I/O. One method for
handling triggered events is providing a callback function. This
results in what is commonly referred to as "callback hell," where
a program devolves into a series of unparsable callback function
redirections.
To combat "callback hell," a number of abstractions have been

created. Futures provide a value which will eventually be resolved
into the value it wraps. Promises and the async/await syntax are
attempts at wrapping futures to make the code lookmore like typical
procedural code, rather than evented callback-style code.

One problem with these styles of abstractions is that they all still
leak. Figure 1 shows the proposed syntax for async/await in Rust.
At a glance, this looks great. The return type is a normal return
type, not a future or any other weird type. However, upon further
inspection, we see that the function has to be tagged with #[async].
And indeed, all functions which end up calling fetch_rust_lang will
have to mark themselves with #[async]. Soon, your whole program
is littered with async notations, and every time you need to change

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 • Rosendahl, K.

#[async]
fn fetch_rust_lang(client: hyper::Client) -> io::Result<String> {

let response = await!(client.get("https://www.rust-lang.org"))?;
if !response.status().is_success() {

return Err(io::Error::new(io::ErrorKind::Other, "request failed"))
}
let body = await!(response.body().concat())?;
let string = String::from_utf8(body)?;
Ok(string)

}

Fig. 1. Proposed Rust async/await syntax

one function that previously did not call an asynchronous function,
you have to annotate it and every function that ever calls it.

2.5 Relation to CS242
This project has strong ties to the lessons and themes of CS242. As
I’ve just outlined, the concurrency paradigm that you choose to
write your program with has drastic impacts on the syntax, control
flow, and general feel of the code.
In addition to the more subjective (but nonetheless incredibly

important) aspects described above, the paradigm you choose also
can have an impact on the performance of your application. Later
on we will discuss how the different design choices that can be
made when writing a concurrency library can impact runtime per-
formance.

3 APPROACH

3.1 Why a Rust Green Threads Library?
Writing a green threads library in Rust was something I was very
interested in doing. Last year in CS240, I implemented a very basic
green threads library in C (with some assembly) as part of a lab[12].
This got me interested in one day diving deeper into different con-
currency techniques. I had been developing node.js applications
for a while and had gotten quite fed up with callback passing, and
had started to use a fibers library [10].

Rust has been an interest of mine for a few years now. I’ve found
its static analysis and compiler guarantees, along with its type sys-
tem, to be incredibly powerful. However, despite writing a few toy
projects in Rust I hadn’t yet had any real exposure to solving non-
trivial problems in the language.
Writing a green threads library in Rust seemed to be a perfect

marriage of these two interests.

3.2 Context Switching
A key aspect of a green threads library is the ability to context
switch. That is, to be able to switch the executing control flow
between one green thread to another.
In order to do this, you need to have the context you want to

switch into, and a place to store the current context you’re switching
out of. Figure 2 shows the Rust struct created to represent this.
You can then use pointers to these structs as the arguments to

our assembly function grn_context_switch (Fig. 3).
However, now we have to find a way to call this function from

Rust. Enter Rust’s Foreign Function Interface (FFI)[4]. Figure 4
shows the function we create in Rust in order to expose our as-
sembly function.

#[repr(C)]
pub struct ThreadContext {

pub rsp: u64,
pub r15: u64,
pub r14: u64,
pub r13: u64,
pub r12: u64,
pub rbx: u64,
pub rbp: u64,

}

Fig. 2. ThreadContext

grn_context_switch:
Move current state to old_context
mov %rsp, (%rdi)
mov %r15, 0x08(%rdi)
mov %r14, 0x10(%rdi)
mov %r13, 0x18(%rdi)
mov %r12, 0x20(%rdi)
mov %rbx, 0x28(%rdi)
mov %rbp, 0x30(%rdi)

Load new state from new_context
mov (%rsi), %rsp
mov 0x08(%rsi), %r15
mov 0x10(%rsi), %r14
mov 0x18(%rsi), %r13
mov 0x20(%rsi), %r12
mov 0x28(%rsi), %rbx
mov 0x30(%rsi), %rbp

ret

Fig. 3. grn_context_switch

#[link(name = "context_switch", kind = "static")]
extern {

fn grn_context_switch(old_context: *mut libc::c_void, new_context: *const libc::c_void);
}

Fig. 4. Rust grn_context_switch FFI function

This Rust wrapper, along with a build script using the cc library
allows us to call out to the assembly function grn_context_switch.
One interesting thing to note here is the annotation #[repr(C)] on
the ThreadContext struct. This tells the Rust compiler that it should
lay the struct out in memory as C would, which allows us to use
the struct as we do in grn_context_switch.

3.3 Thread Stacks
Implementing the context switch required a decent amount of re-
search into Rust’s FFI, the compiler, how to get it to link, and the
memory layout of structs. That said, it was a pretty straightforward
implementation. No real design decisions had to be made.
Once you have context switching working, the next step is to

create a stack for the eventual green thread to use. This sounds
straightforward: just allocate some memory and call it a day. How-
ever, it turns out there’s a large number of implications depending
on the strategy you use for stack allocation and management.

The first style of stack is just like a normal operating thread stack.
You simply allocate a chunk of memory on the heap, and use it
as the stack. The main benefit of this technique is its simplicity.
Additionally, if a thread ends up using a large portion of the stack,
you get the benefit of only having to allocate memory once.
However, many times programs wish to use green threads as

"lightweight tasks." Allocating a relatively large stack just to perform

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

Green Threads in Rust • 1:3

#[repr(C)]
pub struct ThreadStack {

pub inner: Box<[u8]>
}

impl ThreadStack {
pub fn new () -> ThreadStack {

let boxed : Box<[u8]> = vec![0; STACK_SIZE].into_boxed_slice();
ThreadStack {

inner: boxed,
}

}
}

Fig. 5. ThreadStack

a small task will not be very performant, and if many green threads
are being spawned as is not unusual, could cause the program to
use excessive amounts of memory.
A technique used to address this concern is called a "segmented

stack." A segmented stack begins small (maybe around 8KB com-
pared to a 2MB regular stack). When more stack space is required,
the request is trapped, and a new stack segment is allocated, and
used to "extend" the stack via a pointer. When this extra space is no
longer required, the new stack segment is freed.
Besides the obvious added complexity of maintaining the differ-

ent segments of the stack, there can be some pitfalls when using
segmented stacks. Both Rust and Go began by writing runtimes us-
ing segmented stacks, and both eventually moved away from them.
The common issue shared between both Rust’s[9] and Go’s[2] im-
plementations was what they called "stack thrashing" or a "hot split"
problem.

This problem arises when there is a tight loop in the program that
is constantly hitting a stack segment boundary. In each iteration
of the loop, the runtime will have to allocate a new segment, and
at the end of the iteration the runtime will have to deallocate the
new segment. If this occurs in a sufficiently critical section of the
program, performance can be drastically diminish.

Go decided to take a pretty reasonable approach to the issue. The
Go runtime will now start with a small stack size, similar to when
using segmented stacks. However, now when the goroutine runs
out of stack, the runtime will allocate a new, larger (2x as big) stack,
and copy the original stack contents to the new stack. The runtime
will also analyze the contents of the stack, and translate any any
pointers that point at the old stack to be pointers onto the new stack
at the proper location.

Go made a reasonable tradeoff, as can be seen in the Benchmarks
section[2].
I believed that implementing such a scheme for my library was

out of the scope of this project, so for simplicity’s sake I decided
to statically allocate a 2MB stack for each new green thread. Fig. 5
shows the ThreadStack struct and Builder used.

3.4 Bootstrapping the Thread
Now that we are able to switch contexts and we have chosen our
stack management strategy, we are ready to try to actually run a
green thread.
I thought that given my previous work on the C green threads

library, porting the solution to Rust would be trivial. A number of
factors made this assumption naive. The first factor is that Rust

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T,
F: Send + 'static,
T: Send + 'static,

Fig. 6. std::thread::spawn

grn_bootstrap_thread:
push %rbp
mov %rsp, %rbp
mov 0x8(%rbp), %r11
callq *%r11
callq _grn_exit

Fig. 7. C grn_bootstrap_thread

uint64_t *stack_head = (uint64_t *)&thread->stack[STACK_SIZE - 16];
*stack_head = (uint64_t)grn_bootstrap_thread;
*(stack_head + 1) = (uint64_t)fn;

thread->context.rsp = (uint64_t)stack_head;

Fig. 8. C stack initialization

is, in fact, not C. While C will let you do just about anything with
just about any data, you have to be much more mindful in Rust
about how this is executed. The second is that I wanted to write an
ergonomically sound library. The C library I had previously written
accepted only static function pointers. This made the implemen-
tation very simple, but greatly reduces the utility of the library.
I wanted my Rust library to be something that could actually be
used. This meant at least trying to match the patterns provided in
std::thread. std::thread::spawn’s signature is shown in Fig. 6.
In English, this signature basically says that it takes in an ar-

gument f, which is a closure that is safe to be sent across thread
boundaries, which returns a value of type T which is also safe to be
sent across thread boundaries.

The general technique for bootstrapping a green thread is to ma-
nipulate the stack pointer value once the context has been switched
into to make control jump to a trampoline function. The initial stack
of the green thread should also be manipulated such that the tram-
poline function can find the value of the function that should be
called, and call it.

In C this is quite simple. Fig. 7 shows the trampoline function. It
expects that when it is called, therewill be the address of the function
that should be called should be at the top of the stack. It then calls
the function at that address, then calls the global variable _grn_exit
to jump back into the C library and continue in the runtime.

Fig. 8 shows the C code necessary to set up the trampoline func-
tion. It simply puts the user function’s address at the beginning of
the stack, puts the address of grn_bootstrap_thread on the stack and
points the stack pointer there.
However, we have not made it so easy on ourselves in the Rust

library. The first issue that we run into is that the function we
accept is not in fact a function pointer, but instead a closure trait

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:4 • Rosendahl, K.

extern "C" fn call_fn(user_fn: *mut c_void, cb_fn: *mut c_void) {
unsafe {

let user_fn = transmute::<*mut c_void, Box<Box<FnBox()>>>(user_fn);
(*user_fn)();

let cb_fn = transmute::<*mut c_void, Box<Box<FnBox()>>>(cb_fn);
(*cb_fn)();

}
}

Fig. 9. call_fn

// expects:
// [*callback] <- start of stack
// [*wrapped_user_fn]
// [*call_fn]
// [*grn_bootstrap_thread]
grn_bootstrap_thread:
push %rbp
mov %rsp, %rbp
mov 0x8(%rbp), %r11

Call call_fn with wrapped_user_fn
mov 0x10(%rbp), %rdi
mov 0x18(%rbp), %rsi
callq *%r11

Fig. 10. Rust grn_bootstrap_thread

object[5]. The long and short of this is that we cannot simply take
the address of this value, pass it around, and call it later. The trait
object contains more information than just the function, it also
contains the environment the function closes over.

The next issue is that we don’t want to call some global _grn_exit
function, we want to call a method on the Runtime struct that’s in
charge of keeping track of the set of active green threads. Eventually
we arrive at the following. We create a new global function called
call_fn (Fig. 9). This function takes in two void pointers as arguments.
However, it then transmutes these pointers (essentially casting them
back into Rust’s typed, owned scheme) into pointers to pointers to
closures. The first argument should point at the user’s function, and
the second function should point to the closure that is in charge of
delegating back into the runtime after a thread exits. Fig. 10 shows
the new grn_bootstrap_thread implementation, and Fig. 11 shows
how some of the stack locations and the stack pointer were set.

The Rust code seems verbose, but makes sense. However, what I
have included in Fig. 11 includes a bug that plagued me for longer
than I care to admit. A program would run completely fine all the
way through, but would crash while cleaning up resources at the end.
For some reason, Thread.stack.inner was a null pointer. Fig. 12 shows
the Thread struct, along with its memory layout. As can be seen,
the ThreadContext is above directly below the ThreadStack in the
address space[3]. ThreadContext.rsp in particular is 7 bytes before
the ThreadStack’s pointer to where its slice is on the heap. When we
copy pointers onto the stack, we use std::ptr::copy(src, dst, 8). The 8
is necessary since we are copying into a [u8], and since a pointer on
our supported platforms (x86_64) is 8 bytes long. However, when
we use the same call to copy over the bootstrap_thread_ptr into
ThreadContext.rsp, we’re now copying into a u64. This then copied
the values into ThreadContext.rsp and the seven 8-byte memory
locations after it. The last of these locations was where the pointer
to the stack was held, overwriting it with 0x0. Since none of our
library actually touches the stack, the thread simply uses it as a

pub fn spawn<F, T>(&self, f: F) where
F: FnOnce() -> T, F: Send + 'static, T: Send + 'static

{
// ...
let stack_ptr;
let rsp_ptr;
{

let threads = self.threads.borrow();
let thread = threads.get(&new_thread_id).unwrap();
stack_ptr = &((*thread).stack.inner[0]) as *const u8 as *mut u8;
rsp_ptr = &((*thread).context.rsp) as *const u64 as *mut u64;

}

let callback : Box<FnBox()> = Box::new(move || {
self.exit();

});
let callback_fn_ptr = Box::new(callback);

// ...

unsafe {
let stack_head = stack_ptr.offset(thread::STACK_SIZE as isize);

let bootstrap_thread_ptr = Box::new(bootstrap_thread_ptr);
let bootstrap_thread_stack_loc = stack_head.offset(-32isize);
let bootstrap_thread_ptr = &*bootstrap_thread_ptr as *const _ as *mut _;
std::ptr::copy(bootstrap_thread_ptr, bootstrap_thread_stack_loc, 8);

//...

let callback_fn_ptr = Box::new(callback_fn_ptr);
let callback_fn_stack_loc = stack_head.offset(-8isize);
let callback_fn_ptr = &*callback_fn_ptr as *const _ as *mut _;
std::ptr::copy(callback_fn_ptr, callback_fn_stack_loc, 8);

let bootstrap_thread_ptr = Box::new(bootstrap_thread_stack_loc);
let bootstrap_thread_ptr = &*bootstrap_thread_ptr as *const _ as *mut _;
std::ptr::copy(bootstrap_thread_ptr, rsp_ptr, 8);

std::mem::forget(wrapped_user_fn_ptr);
std::mem::forget(callback_fn_ptr);

}
}

Fig. 11. Rust stack initialization

#[repr(C)]
pub struct Thread {

pub id: u64, // 0x00
pub status: ThreadStatus, // 0x08
pub context: ThreadContext, // 0x10-0x38
pub stack: ThreadStack, // 0x40-0x48

}

Fig. 12. Thread struct layout

stack, no issue comes up while the threads are running. However,
when we go to deallocate the ThreadStack, its pointer is null, and
the program crashes.

I think this bug really highlights what Rust is trying to accomplish.
C would let the programmer make that mistake as much as they
wanted to. But Rust made me really work to shoot myself in the foot.
And while debugging it took a lot more time and a lot more gdb
than I wish it had, I knew roughly where in the code the problem
had to be. It had to be in one of the places that I had wrapped in
unsafe.

3.5 Cross-thread Reference Passing
I wanted to have Runtime struct that was in charge of spawning,
yielding, and cleaning up threads when they exited. Fig. 13 shows
the basic outline of these methods.
As seen in Fig. 11, the callback we call spawn is simply self.exit.

However, as we can see further down in yield_now_to_status, there

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

Green Threads in Rust • 1:5

pub fn yield_now(&self) {
self.yield_now_to_status(ThreadStatus::Ready)

}

fn exit(&self) {
self.yield_now_to_status(ThreadStatus::Zombie);

}

fn yield_now_to_status(&self, status : ThreadStatus) {
// pseudo code below
let next_thread_idx = self.next_thread();

let current thread = self.threads.get(self.current);
*current_thread.status = status;
let cur_ptr = ¤t_thread.context;
let new_ptr = &self.threads.get(next_thread_idx);

self.current = next_thread_idx;

unsafe {
let cur_ptr = transmute::<*mut ThreadContext, *mut c_void>(cur_ptr);
let new_ptr = transmute::<*mut ThreadContext, *mut c_void>(new_ptr);
grn_context_switch(cur_ptr, new_ptr);

}
}

Fig. 13. yield_now and exit

pub struct Runtime {
threads: RefCell<BTreeMap<u64, thread::Thread>>,
current: RefCell<u64>,
id_counter: RefCell<u64>,

}

Fig. 14. Runtime

is a decent amount of mutation that needs to be done when both
yielding and exiting. Alas, when we actually consume the library,
we want to be able to call yield_now from within any number of
threads. This would require us to pass mutable references to the
Runtime into each closure that is run in a green thread. However,
Rust’s borrow checker clearly won’t allow this.
The answer to this problem is std::cell::RefCell. The RefCell

allows you to push Rust’s borrow checker requirements to runtime.
Here we know that there will de facto only ever be one thread
operating on these objects at a time, but Rust’s compiler is not able
to understand that. So we wrap all of the members of Runtime that
we need to access in RefCells, and call borrow and borrow_mut to
access them. Fig. 14 shows what the Runtime struct ends being
defined as. Fig. 15 shows the main body of yield_now_to_status.

One interesting thing to note here is the explicit blocks required.
My original attempt at the rewritten yield_now_to_status did not in-
clude the explicit blocks, andwould panic complaining that self.threads
was borrowed mutably multiple times at ones. This was because
grn_context_switchwould switch threads before the destructor of the
temporarily borrowed value was run. This means that the temporar-
ily borrowed value never released its ownership, and when the next
thread got to yield_now_to_status and tried to call self.threads.borrow_mut,
it saw it as already borrowed mutably and panicked.

4 RESULTS
I accomplished the task I originally set out to: build a green threads
library in Rust with a reasonably ergonomic API. Fig. 16 shows a
sample program and its output.
I was also able to play around with implementing some higher

level primitives. Notably, I implemented a sync function that runs a

let cur_ptr;
{

let mut threads = self.threads.borrow_mut();
let mut current_thread = threads.get_mut(&self.current.borrow()).unwrap();
current_thread.status = status;
cur_ptr = &((*current_thread).context) as *const _ as *mut _;

}

let new_ptr;
{

let mut threads = self.threads.borrow_mut();
let mut new_thread = threads.get_mut(&next_thread_idx).unwrap();
new_thread.status = ThreadStatus::Running;
new_ptr = &((*new_thread).context) as *const _ as *mut _;

}

{
let mut current = self.current.borrow_mut();
*current = next_thread_idx;

}

unsafe {
let cur_ptr = transmute::<*mut ThreadContext, *mut c_void>(cur_ptr);
let new_ptr = transmute::<*mut ThreadContext, *mut c_void>(new_ptr);
grn_context_switch(cur_ptr, new_context_ptr);

}

Fig. 15. yield_now_to_status

fn main() {
thread::spawn(|| {

for i in 0..5 {
println!("in thread {}", i);
thread::yield_now();

}
});

for i in 0..5 {
println!("in main {}", i);
thread::yield_now();

}

println!("back out in main");
}

$ cargo run
in main 0
in thread 0
in main 1
in thread 1
in main 2
in thread 2
in main 3
in thread 3
in main 4
in thread 4
back out in main

Fig. 16. Sample program

green thread, but does not require the invoking function to explicitly
call yield_now. Fig. 17 shows a sample program using sync, and Fig.
18 shows sync’s implementation.

I wished to also write a wrapper around an asynchronous I/O
operation to be able to compare both the style and the speed of
the green threads library vs something like tokio. However every
async I/O library I found seemed to be coupled too tightly to either
mio or some other paradigm to easily integrate with my library.
Barring being able to do that, I will qualitatively compare the

library I have created and the possible abstractions that could be
built on top with past, present, and future Rust options.

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

1:6 • Rosendahl, K.

fn main() {
thread::sync(|| {

for i in 0..5 {
println!("in thread {}", i);
thread::yield_now();

}
});

println!("back out in main");
}

$ cargo run
in thread 0
in thread 1
in thread 2
in thread 3
in thread 4
back out in main

Fig. 17. Sample program

pub fn sync<F, T>(f: F) where
F: FnOnce() -> T, F: Send + 'static, T: Send + 'static

{
let exited = Arc::new(Mutex::new(false));
let exited_clone = exited.clone();

spawn(move || {
f();
*exited_clone.lock().unwrap() = true;

});

while !*exited.lock().unwrap() {
yield_now();

}
}

Fig. 18. Sample program

4.1 libgreen
Originally Rust came with a green threads runtime, however it was
later stripped in favor of solely using native threads and support-
ing blocking I/O in the standard library. There reasons were as
follows[1]:

• Forced co-evolution: they were concerned that having both
green and native threading models and supporting the same
I/O API for them was both an undue burden and also yielded
a lowest common denominator interface, not an ideal one.

• Overhead: Including the green thread runtime doubled the
size of a basic "hello world" binary.

• Problematic I/O interactions: Not all of the asynchronous
I/O functions used by the green thread runtime were actu-
ally asynchronous. Making a blocking call in a green thread
can end up blocking the worker thread running the green
scheduler.

• Embedding: Setting up the runtime when calling Rust code
from C or other languages requires a lot of work

• Maintenance burden: It’s hard to maintain two different
implementations

I think the Rust team made the correct choice in stripping the
runtime from Rust and putting it into a seperate library libgreen[7].
Rust is meant to be a highly performant systems language. It should
not paint you into a corner where you cannot get maximal perfor-
mance, and you absolutely need access to native threads and native
APIs.

However, my library has one huge advantage over libgreen. You
can actually use it today. libgreen has not been committed to in
over 3 years, half a year before Rust hit v1. In examining the source
you will not find Rust as you know it, but instead many different
complicated now defunct syntax elements.

4.2 tokio
tokio is a bold attempt to implement a zero-cost abstraction over
asynchronous I/O. The total number of characters of code you have
to produce to get seriously impressive results is low, and it includes
some nice combinators over the Futures that its functions return.

The technical work behind tokio is world class, yet the number
one complaint they get is "it’s confusing!"[8]. In fact the initial v0.1
release is blocked on explaining to the world how they’re async
abstraction isn’t confusing. They’re current hope is that Rust adding
async/await syntax[13] will aid in that.

4.3 async/await
The hardships that tokio is facing is not something new. Recently,
the exact same arguments were had in the node.js community. Four
years ago, everyone was complaining about "callback hell," so people
implemented futures, and wrapped them up in promises, and the
world rejoiced. But then everyone realized they hated promises, so
they decided instead that you should just have to write async before
a function that is asynchronous, and await whenever you’re calling
another asynchronous function from within a function marked
async.

The problem with this explicit async/await is that it spreads like
the plague. When you need to add asynchronous I/O to a function,
you then have to pop up the call stack everywhere that function is
called, and annotate the call with await, mark the calling function
as async, and repeat.

So while async/await may be syntactically better than futures and
promises, there is still this underlying issue of function infection.
This issue is nicely summed up in What Color is Your Function?[11].

4.4 A Happy Medium
Computer Science is all about tradeoffs. Go has a runtime built on
green threads that automatically handles I/O asynchronously for
you. Rust has an event-loop based asynchronous I/O framework that
can produce an http server that can handle 33% more requests[6],
but nobody can figure out how to use it [8].

Is there a single right answer? Of course not. tokio should abso-
lutely exist, and should aim to provide the most efficient possible
implementation. Hopefully async/await will make it palatable. And
for many systems languages, maybe that’s where we would want
to stop.

But one day I hope to see Rust used not only as a high performance
systems language, but also as an ergonomic, developer friendly
general purpose programming language. And if with a green threads
runtime that automatically handled asynchronous I/O you could get
performance comparable to say Go, I could absolutely see it being
used as such. But in that future, I know I for one will not be trying
to write async tokio.

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

Green Threads in Rust • 1:7

REFERENCES
[1] 0000-remove-runtime. (????). https://github.com/aturon/rfcs/blob/

remove-runtime/active/0000-remove-runtime.md
[2] Contiguous stacks. (????). https://docs.google.com/document/d/

1wAaf1rYoM4S4gtnPh0zOlGzWtrZFQ5suE8qr2sD8uWQ/pub
[3] Rust Container Cheat Sheet. (????). https://docs.google.com/presentation/d/

1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4/edit#slide=id.p
[4] Trait Objects. (????). https://doc.rust-lang.org/book/first-edition/ffi.html
[5] Trait Objects. (????). https://doc.rust-lang.org/book/first-edition/trait-objects.

html
[6] Zero-cost futures in Rust. (????). https://aturon.github.io/blog/2016/08/11/futures/
[7] alexcrichton. libgreen. (????). https://github.com/alexcrichton/green-rs
[8] alexcrichton. 2017. Restructure documentation from the ground up. (June 2017).

https://github.com/tokio-rs/tokio/issues/13
[9] Brian Anderson. 2013. Abandoning segmented stacks in Rust. (Nov. 2013). https:

//mail.mozilla.org/pipermail/rust-dev/2013-November/006314.html
[10] laverdet. node-fibers. (????). https://github.com/laverdet/node-fibers
[11] Bob Nystrom. 2015. Restructure documentation from the ground up. (Feb. 2015).

http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
[12] CS240 Staff. Lab 1: Cooperative Green Threads. (????). http://www.scs.stanford.

edu/17sp-cs240/labs/lab1/
[13] steveklabnik. 2015. Async IO. (April 2015). https://github.com/rust-lang/rfcs/

issues/1081

, Vol. 1, No. 1, Article 1. Publication date: December 2017.

https://github.com/aturon/rfcs/blob/remove-runtime/active/0000-remove-runtime.md
https://github.com/aturon/rfcs/blob/remove-runtime/active/0000-remove-runtime.md
https://docs.google.com/document/d/1wAaf1rYoM4S4gtnPh0zOlGzWtrZFQ5suE8qr2sD8uWQ/pub
https://docs.google.com/document/d/1wAaf1rYoM4S4gtnPh0zOlGzWtrZFQ5suE8qr2sD8uWQ/pub
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4/edit#slide=id.p
https://docs.google.com/presentation/d/1q-c7UAyrUlM-eZyTo1pd8SZ0qwA_wYxmPZVOQkoDmH4/edit#slide=id.p
https://doc.rust-lang.org/book/first-edition/ffi.html
https://doc.rust-lang.org/book/first-edition/trait-objects.html
https://doc.rust-lang.org/book/first-edition/trait-objects.html
https://aturon.github.io/blog/2016/08/11/futures/
https://github.com/alexcrichton/green-rs
https://github.com/tokio-rs/tokio/issues/13
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006314.html
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006314.html
https://github.com/laverdet/node-fibers
http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://www.scs.stanford.edu/17sp-cs240/labs/lab1/
http://www.scs.stanford.edu/17sp-cs240/labs/lab1/
https://github.com/rust-lang/rfcs/issues/1081
https://github.com/rust-lang/rfcs/issues/1081

	1 Summary
	2 Background
	2.1 Threading
	2.2 Green Threads in the Wild
	2.3 Event Loops
	2.4 Async I/O, Callbacks, Futures, Promises, and Async/Await
	2.5 Relation to CS242

	3 Approach
	3.1 Why a Rust Green Threads Library?
	3.2 Context Switching
	3.3 Thread Stacks
	3.4 Bootstrapping the Thread
	3.5 Cross-thread Reference Passing

	4 Results
	4.1 libgreen
	4.2 tokio
	4.3 async/await
	4.4 A Happy Medium

	References

