
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

An Analysis and Discussion of Solutions to the Expression Problem Across
Programming Languages

KEVIN TIAN, Stanford University

COLIN WEI, Stanford University

The “expression problem” in programming language design refers to the following phenomenon that occurs in naive implementations
in functional or object-oriented programming languages: suppose we have a set of object classes, and a set of methods that the classes
support. Then, while requiring that existing code not be modified, it is often simple to extend the code to include either an additional
method (to be supported by all existing classes), or an additional class (to support all existing functions), but not both. Various solutions
to this problem have been proposed in different programming languages, each with their unique sets of tradeoffs and features. In this
paper we aim to provide a unified discussion and analysis on case studies of these solutions in Java, C++, Clojure, and OCaml. We also
provide a novel solution which arises naturally in object-oriented languages by considering the duality of functions and objects in the
expression problem. Our implementations can be found at https://github.com/cwein3/CS242Proj/.

Additional Key Words and Phrases: Expression problem, functional programming language, object oriented programming language

ACM Reference Format:
Kevin Tian and Colin Wei. 2017. An Analysis and Discussion of Solutions to the Expression Problem Across Programming Languages.
1, 1 (December 2017), 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The expression problem is now a classical problem in program language design, because in many ways it captures the
expressibility of a language. The problem is as follows: consider a chunk of code that consists of somem “object classes”
and n “functions”, such that each object class should support its own implementation of each function. A simple example
that we will use throughout this survey (and will call the “shapes example”) is the situation where the object classes
are different types of shapes (for example, Triangle, Square, Hexagon, . . . ) and the functions are computations which
are specific to the type of shape (for example, angle, area, or perimeter calculation). The classic difficulty described by
the expression problem arises when we try to extend the code to include either 1) an additional class which supports
all existing functions, or 2) an additional method which is supported by all existing classes, both without modifying
or duplicating existing code. The problem can be motivated by considering the following: clearly, if we are to add an
additional function, we must write at leastm pieces of additional code to describe the implementation for each existing
class (and similar for adding classes); a solution to the expression problem must do the minimal amount of additional
implementation in both of these cases.

The reason this problem is typically difficult is because most programming languages make one of these cases easy,
and the other hard. For example, in functional languages, adding functions is easy, but adding classes is difficult –

Authors’ addresses: Kevin Tian, Stanford University, kjtian@stanford.edu; Colin Wei, Stanford University, colinwei@stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Tian, Wei

naively, it requires retroactively modifying existing functions. Conversely, in object-oriented languages, adding objects
is easy, but it is difficult to add a function without touching existing code. Since the problem has been proposed, there
have been many workaround solutions that were discovered, which vary in simplicity, safety, and performance overhead.
We aim to provide a survey of these methods in four languages, which we hope will serve as comprehensive case studies
and illustrate why this problem is not as intimidating as it may appear. As far as we can tell, solutions fall under one of
four general frameworks: object algebras, visitors, type classes, and multi-methods. We provide implementations of
solutions falling under these frameworks in programming language settings that we found illuminating, benchmark the
solutions, and then conclude by suggesting a novel approach and giving a discussion.

2 OBJECT ALGEBRAS

Oliveira and Cook [2012] introduce the concept of object algebras in order to solve the expression problem. According
to Oliveira and Cook [2012], the advantage of object algebras is that they can be easily implemented in commonly used
object-oriented languages such as Java and C#. The object algebras framework is relatively simple and does not require
complex typing features.

Consider the shapes example. To implement object algebras, we would first define a ShapeAlg interface, which
defines a function that implements the desired behavior for each type of shape: triangle(), square(), etc. Next,
“factories” for different operations will implement this interface. For example, to implement the area computation, we
would first define an Area interface which has a single function, area(). Then we could define an AreaFactory that
implements ShapeAlg and constructs an Area object that implements area() in a manner that is specific to the shape
type.

The expression problem is now solved because to add new shape types, we can simply extend the ShapeAlg interface
to support a new function for that shape type. For example, to add support for hexagons, we can extend ShapeAlg to the
ShapeAlgWithHexagon interface, which also includes a hexagon() function. We would then extend the already-existing
factories to implement the new hexagon() function. Adding a new operation is easy to: we simply create a new factory
for that operation. For example, to add the perimeter operation, we would create a Perimeter interface of objects which
include the perimeter function, and then we would create a PerimeterFactory which creates Perimeter objects.

We implement our shapes setting using object algebras in order to provide a qualitative and quantitative evaluation
of this solution to the expression problem. We use Java for our implementation. In our implementation, we explore both
aspects of extensibility: we add a new angle calculation operation on top of the already existing area and perimeter
operations, and we add a new hexagon shape. We then benchmark our code as follows: we construct 1000000 random
shapes, and then perform our area, perimeter, and angle computations for each of these random shapes. This is the
benchmark that will be used throughout the rest of the paper to test performance. For the object algebras setting, we
compare against a standard object oriented solution.

Qualitatively, we find that the object algebras framework is indeed very easy to use once one understands it. In
particular, the implementation did not require an advanced knowledge of extensibility and object oriented principles
beyond the basic understanding that one could gain from an introductory computer science class. Object algebras also
did not require any advanced object oriented features to implement.

We do note that object algebras make certain aspects of object oriented programming more unwieldy, however.
For the pure object oriented implementation, in our benchmarks we simply created a Triangle, Square, etc. object
depending on the shape type. Then to perform calculations on our shapes, we simply called shape.CalcArea(),

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

An Analysis and Discussion of Solutions to the Expression Problem Across Programming Languages 3

Object Algebras Object Oriented
Runtime (seconds) 0.327 0.139

Fig. 1. We show the average runtime, in seconds, of our shapes benchmark for both the object algebras and object oriented
implementations. Times are averaged over 10 trials in order to reduce variance.

shape.CalcPerimeter(), and so on, without having to worry about the specific type of shape. However, since object al-
gebra implementation did not have a notion of a shape object, we had to make several type-specific function calls for each
shape. For example, to create a triangle, we had to call AreaFactory.triangle(), PerimeterFactory.triangle(),
AngleFactory.triangle(). Perhaps there is a more clever way to circumvent this issue, but the object oriented
approach certainly seems more natural and simpler in this case. This could become a hassle in more complicated
projects that need to support multiple different operation types at once.

Quantitatively, we also found that the object algebras implementation suffered runtime losses compared to the object
oriented approach. The object algebras implementation took around 2.5 times longer to perform the same operations.
We hypothesize that this might be because the object algebras implementation is required to make a separate object for
computing area, perimeter, and angle, instead of just a single shape object.

3 VISITOR FRAMEWORK

The visitor pattern [Krishnamurthi et al. 1998] is an older solution to the expression problem than object algebras, and
object algebras are similar to the visitor pattern in many ways. The visitor pattern applies functional programming
ideas to solve the expression problem in object-oriented languages. Both the visitor pattern and object algebras invert
the object oriented paradigm by defining objects for the different operations we wish to perform and then defining
functions corresponding to each type. However, object algebras claim to remove some of the overhead involved in the
visitor pattern, namely the need for “accept” methods, while the visitor pattern seems more object-oriented in nature.

To implement the visitor pattern in the shapes setting, we first define a ShapesVisitor interface that has functions
VisitTriangle(), VisitSquare(), etc., for each type of shape. These visit functions will take in a shape object and
perform the desired operation on that object. For example, to implement area computation, we could define the
AreaVisitor class which will implement VisitTriangle(), etc., to correctly compute the area for the specific shape. This
idea is very similar to the approach taken by object algebras; however, the visitor pattern differs in the sense that we
also need to define a Shapes interface with the function Accept. The purpose of the Accept function is to take in a
visitor and call the visitor’s operation on itself: for example, a Triangle class would implement the Accept function by
taking in a generic ShapesVisitor and calling VisitTriangle() on itself. In a way, the visitor framework implements
functional programming in an object oriented language by mapping different operations to various function objects.

To create new types in the visitor framework, we would again extend the shapes visitor interface to account for the
additional type. For example, to add hexagons, we would extend ShapesVisitor to the ShapesVisitorWithHexagon
interface, which contains a VisitHexagon() function. To add new operations, we could simply write a new visitor.

We implement the visitor framework in C++, defining the shapes family and area, perimeter, and angle operations.
We benchmark our code in the same manner as our object algebra implementation: we generate 1000000 random shapes
and then perform all three operations for each shape. For this experiment, we have three different implementations: a
standard object oriented implementation, an inextensible visitor framework implementation, and an extensible visitor
framework implementation. The inextensible visitor framework supports the addition of new operations, but does not

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Tian, Wei

Object Oriented Inextensible Visitor Extensible Visitor
Runtime (seconds) 0.142 0.211 0.301

Fig. 2. We show the average runtime, in seconds, of our shapes benchmark for the object oriented and visitor pattern implementations.
Times are averaged over 10 trials in order to reduce variance.

have the object oriented programming bells and whistles needed to support additional types. Our implementations
follow the outline provided in [Bendersky 2016].

We first provide our qualitative evaluation of the visitor framework. The visitor framework does seem to be more
cumbersome to implement than standard object oriented programming, as it is also more counterintuitive (in our
opinions) than the object algebras framework. However, because it is also more object-oriented than the object algebras
framework, it avoided the problem with the object algebras framework discussed earlier. In particular, we did not need
to call several different functions everytime we created a new shape. We instead could create a single Shape object
each time, and when actually performing computations, call shape -> Accept(areavisitor), etc. This gave a minor
ease-of-implementation advantage over object algebras.

Quantitatively, we found that the visitor pattern performed worse than standard object oriented programming in
terms of runtime. Again, we attribute this to increased overhead because the visitor pattern requires us to pass more
objects around, thus requiring more operations.

4 TYPE CLASSES

Type classes are a very lightweight solution to the expression problem in staticly typed languages. The specific case
study we consider is implementing polymorphic variants in OCaml, a functional language. We follow a solution outlined
in [Kalmbach 2016].

Recall that the difficulty described by the expression problem in functional languages is that when we try to add
an additional class, we cannot modify existing functions to handle this new case. A simple work-around would look
as follows: suppose we have an interface type Shape defined as type shape = Triangle of float | Square of

float and a function area which takes a Shape (by the existing definition), and handles the Triangle and Square

cases separately. Now we want to add a new type of Shape, namely a Hexagon, and modify area appropriately to
handle it. To do so, we would like to make a new method new_area which takes type: Shape | Hexagon, and has two
cases: if the input to new_area is a Shape by the old definition, then we just call the old method on the input; otherwise,
we handle the Hexagon case separately. This sort of wrapper framework is also extremely analogous to the visitor
framework in object-oriented programming.

Type classes essentially formalize this idea of extendible types. More specifically, in OCaml this is done by defining
Shape as a polymorphic variant, with type shape = [‘Triangle of float | ‘Square of float]. Any method
which takes in a Shape as an argument technically has the type [> ‘Triangle of float | ‘Square of float],
which means a type larger than that of our pre-defined Shape. Thus, we are able to retroactively add classes and define
new functions to support them, which take in this “larger type” as input. For example, we could write let new_area s

= match s with shape as x -> area x | ‘Hexagon len -> 6.0 *. len.
Qualitatively, type classes are very lightweight, and essentially do a minimal amount of work, with the polymorphic

variant handling all of the typing interpretation. However, there are a few difficulties with this solution. As with all
variations of the “wrapper” framework of solutions, it can become quite difficult to carry around a new copy of every
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

An Analysis and Discussion of Solutions to the Expression Problem Across Programming Languages 5

function every time we add a class. Furthermore, type safety is somewhat sacrificed, and the inelegant workaround
to this consists of annotating every function declaration with types, which can get complicated. A more concise
compromise in OCaml is the extensible variant type, where we can formally modify the type Shape to include the
Hexagon case, with type shape = .. and type shape += Hexagon of float.

Quantitatively, we observed a slight performance hit in our simple example, but we think the performance hit
due to overhead will likely be larger the more class extensions there are that need to be supported. We compare an
implementation using polymorphic variants with a baseline, which simply declares all the classes and functions in one
go and does not support retroactive modification. We attribute the overhead to having to follow different pointers to
old functions in the new function definitions.

Polymorphic Variants Baseline
Runtime (seconds) 0.977 0.861

Fig. 3. We show the average runtime, in seconds, of our shapes benchmark for both the baseline and polymorphic variants implemen-
tations. Times are averaged over 20 trials in order to reduce variance.

5 MULTIMETHODS

Up to this point, solutions we have discussed have followed a fairly similar skeleton: they roughly consist of creating
new functions which case on input to call the existing function, or handle new cases, in order to support adding new
object classes. This begs the question: what if we relax the problem setting by allowing functions to retroactively be
modified by cases? In particular, it would be most convenient if we were able to define some function, say defmulti

area class, where class can be cased on retroactively. In a functional programming language, this maintains the
feature that adding new functions is simple, but furthermore it lends itself to the easy adding of classes.

The case study we consider here is multimethods in Clojure which are a simple feature of the language. Here, we
follow a solution outlined in [Bendersky 2016]. The primary feature which is exploited here is the fact that we can
define “open methods”, in other words first class methods which are allowed to act on existing and newly-defined types.

To give a simple example of how straightforward this solution is in practice, we describe how we implemented area
as a multimethod over shapes. We define the method via (defmulti area class) as described above, and define
cases on existing classes to the method via (defmethod area Square [s] (* (:length s) (:length s))). If
we retroactively define a new class, say (defrecord Hexagon [length]), we are able to modify the casing with
(defmethod area Hexagon [h] (* 2.598 (* (:length h) (:length h)))).

Qualitatively, this is definitely the simplest solution to the expression problem we encountered – implementing it
requires essentially no additional work other than declaring that the method in question is a multimethod! This is likely
a situation that the makers of Clojure considered in defining the expressibility of the language, and is an advantage to
the way it was designed.

Quantitatively, the implementation via multimethods vs. a simple baseline (writing separate functions and hardcoding
cases to existing classes) had a slight performance drop, but it is not extremely significant, and is likely due to a slight
overhead due to the implicit casing of the method definition vs. the explicit casing defined within the method in the
baseline.

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Tian, Wei

Multimethods Baseline
Runtime (seconds) 3.935 3.680

Fig. 4. We show the average runtime, in seconds, of our shapes benchmark for both the baseline and multimethods implementations.
Times are averaged over 20 trials in order to reduce variance.

6 CONCLUSIONS AND DISCUSSION

We analyzed existing solutions to the expressivity problem, which arises in both functional and object oriented
programming languages. We implement and benchmark four solutions to the expressivity problem: object algebras,
the visitor framework, type classes, and multimethods. Each of these methods cleanly solve the expressivity problem;
however, they all present their own tradeoffs too in aspects such as runtime, ease of use, and type safety. We provide a
detailed analysis of the tradeoffs involved for each of these solutions to the expressivity problem in our paper.

We would like to note that all of these solutions to the expressivity problem are variants of the same core idea.
Namely, the idea is that to extend functional programming to allow the addition of types, we can extend our functions
so that they behave the original way when given types that were already defined and also accommodate the newly
added types. Object oriented languages implement this idea by essentially “inverting” to become more functional and
then extending the classes which define this functional behavior. Functional programming languages implement this
idea in a more direct manner.

To close, we note that all of these solutions work using the functional viewpoint of programming languages - is there
a corresponding object oriented solution? This natural question arises from the realization that the first 3 solutions
discussed in this paper all follow a very similar skeleton, where if we want to retroactively modify some function f_old

to case on some class c_new, it suffices to define a “wrapper function” f_new which has two branches: if the input is
of type c_new, define the case within the function body of f_new; otherwise, simply call f_old with the same input.
For functional programming languages, this is a natural solution, but its relationship to the visitor framework feels
unnatural, in the sense that it is an extension to functions despite the visitor framework working on objected-oriented
languages.

To reconcile this inconsistency, we propose the following alternative solution for object-oriented languages, which
can be viewed as dual to the solutions discussed in this paper. Suppose we are in an object-oriented framework and we
have some class c_old which we wish to retroactively modify to support some new function f_new. Then, we posit
that it suffices to define a new class c_new which contains an instance of c_old as a field, and also a definition for
f_new applied in the desired way. In this way, it also supports all previously defined methods without reusing existing
code, by simply passing them the computation to the corresponding instance of c_old. While it is a simple reversal
of several existing solutions, we did not encounter this type of solution in our literature review, and think it may be
independently interesting. We hypothesize that it is possible that more overhead is incurred while “layering classes”
instead of “layering methods”, but it would be interesting to evaluate this type of solution systematically in future work.

Equal work was performed by both project members.

ACKNOWLEDGMENTS

The authors would like to thank Varun and Will for being homies.

REFERENCES
Eli Bendersky. 2016. The Expression Problem and Its Solutions. https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/. (2016).
Manuscript submitted to ACM

https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/


313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

An Analysis and Discussion of Solutions to the Expression Problem Across Programming Languages 7

Antoine Kalmbach. 2016. The expression problem as a litmus test. http://ane.github.io/2016/01/08/the-expression-problem-as-a-litmus-test.html/. (2016).
Shriram Krishnamurthi, Matthias Felleisen, and Daniel P Friedman. 1998. Synthesizing object-oriented and functional design to promote re-use. In

European Conference on Object-Oriented Programming. Springer, 91–113.
Bruno C d S Oliveira and William R Cook. 2012. Extensibility for the Masses. In European Conference on Object-Oriented Programming. Springer, 2–27.

Manuscript submitted to ACM

http://ane.github.io/2016/01/08/the-expression-problem-as-a-litmus-test.html/

	Abstract
	1 Introduction
	2 Object Algebras
	3 Visitor Framework
	4 Type Classes
	5 Multimethods
	6 Conclusions and Discussion
	Acknowledgments
	References

