
On the Use of Cryptol, a Cryptography Domain Specific Language

WILLIAM KOVACS
ACM Reference Format:
William Kovacs. 2017. On the Use of Cryptol, a Cryptography Domain
Specific Language. 1, 1 (December 2017), 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 SUMMARY
The implementation of cryptographic algorithms faces numerous
issues when being implemented in common languages, particularly
due to the lack of constructs that lead to a more intuitive translation
from idea to code. This can lead to issues when code is used as a
reference for a particular algorithm due to the difficulty of parisng
the meaning of the code itself. To combat this issue, Cryptol has
been developed so that code better mirrors the functioning of the
algorithm itself, as opposed to more abstruse code. In order to evalu-
ate the utility of this language, I implemeted a series of increasingly
difficult cryptographic algorithms (the Viginere cipher, the SHA1
hash function, and the DES symmetric key cipher) in both Cryp-
tol and C. As with learning any new language paradigm, getting
Cryptol code to work was initially difficulty, but once it became
comfortable, it felt better than C. Its utility becomes increasingly
apparent with code sections that require single bit manipulations,
such as the permutation of a bit string. However, such a language
is, as expected of a functional language, mostly useful in research
or verification of other implementations due to the speed tradeoff,
and the opacity of the language constructs.

2 BACKGROUND
Cryptographic algorithms require operations that can be rather
difficult to succintly capture in many programming languages. Such
an issue is best exemplified with any form of bit manipulation,
where the programmer needs to manage the bits of a particular
variable as opposed to the bytes. While it is possible to achieve
this in most languages, its implementation can look a bit unwieldy.
For example, when given a string to encrypt in C, it is necessary to
employ shift operators to access the requisite bit. It would be possible
to implement a bit string as its own array of chars to improve
access to the bits, but such a representation would introduce its own
difficulties when the bits need to actually represent a number, such
as an index as in DES or an integer to be summed.

In order to construct more understandable representations of this
class of algorithms, Galois Inc. developed a domain specific language
(DSL) known as Cryptol[Galois, Inc. 2016], accompanied by a tool
suite that can be used to verify the implementation of an algorithm
written in another language, like C. To be clear, the intention behind
this language is not to be used as a production ready implementation,
but rather as an alternative that provides clarity in code coupled

Author’s address: William Kovacs.

© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

with a provably functional implementation. Such a system would
be useful when prototyping, verifying, and creating a reference for
these types of algorithms, which is in contrast with other DSLs,
such as Tensorflow, that are meant for production usage.
The purpose of this project is to evaluate the utility of using

such a DSL to implement cryptogtaphic functions, particularly by
comparing it with a corresponding implementation in C, with the
hypothesis being that using Cryptol provides an easier alternative
to quickly implementing such a function, and that such an imple-
mentation is more easily understandable. As such, this relates to two
of the themes of the course: expressiveness and correctness. Expres-
siveness clearly relates to this project because a major distinction
between these two languages is the ability to represent the requisite
operations and its impact on the ability to both generate and read
the different code. Meanwhile, correctness is a major distinction
between these two types of languages because while C can have a
variety of issues with its pointers and explicit memory management,
Cryptol is a strongly typed, functional language based on Haskell
that does not encounter such issues. Furthermore, as mentioned
above, it does offer a variety of tools to allow easier access to proving
the correctness of these algorithms, though this is not touched upon
in the constructed implementations. The third theme, performance,
is not considered herein due to the purpose of Cryptol: its more
focused on readability and correctness rather than speed (this is
mentioned due to the noticeably longer time to run an iteration of
the algorithm in Cryptol compared with those in C).
Before describing the project in further details, it is helpful to

discuss a major distinction between the two languages that con-
tributes to the aforementioned differences: the type system. In C, the
smallest representation of data that you can reasonable work with is
8 bits, in a char (bitfields are excluded due to their availability only
in structs, which makes it an untenable approach for this use case).
However, in Cryptol, the smallest value you can have is a single
bit (represented by "True" or "False"), and most other values are
interpreted as sequences of these bits. For example, the character "a"
is equivalent to [F,T,T,F,F,F,F,T]. This idea can then be extended to
strings, which would be a sequence of such a sequence of bits. This
particular difference is one that contributes a lot to the readability
and ease of programming in Cryptol, as will be discussed later.

3 APPROACH
Two things needed to be accomplished within the scope of this
project. The first is to learn a new language, in this case Cryptol
itself. Cryptol is a functional language built on top of Haskell, and as
such, requires a different paradigm of thinking about programming.
Of particular note, is the strictness of the type system in which
there can be no ambiguity of what goes in or out of a function.
This translates to knowing the exact lengths of these input/output
sequences, which took time to recognize. In order to acclimate
myself to these changes, I read through the beginning section of the
Cryptol documentation[Galois, Inc. 2016] to get a sense of how it

, Vol. 1, No. 1, Article . Publication date: December 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • William Kovacs

Fig. 1. Example of Vigenere Cipher with Message "TEST" and key "ABC"

works. To facilitate the learning process while achieving the next
goal is to implement the algorithms in an increasingly difficult order.

The second goal is to perform a comparison of the effectiveness, in
terms of expressivity and readability, of the two languages, Cryptol
and C, in implementing working representations of cryptographic
algorithms. To this end, I implemented three sets of algorithms
with increasing difficulty, with each one having a focus on different
types of operations used. The order of Cryptol then C is important
because it would be expected that the initial attempt would be
more difficult due to the novel introduction. With the hypothesis
suggesting that Cryptol provides an easier interface, if I still found
it easier to construct something in Cryptol after working on it in
the more difficult setting, then it is more likely to attribute it to the
language than the familiarity of implementing the algorithm. As for
the actual algorithms, the first was the Viginere cipher, followed by
the SHA1 hash function, and finally the DES cipher. The reasoning
behind these and overviews of the algorithms themselves will be
described in the following sub-sections.

3.1 Vigenere Cipher
The Vigenere cipher is a very simple ’classic’ cipher that provides
essentially no security this day and age, but provides a useful vehi-
cle to begin learning how to effectively program in this language.
Originally, there was going to be a progression of the Caesar cipher
followed by the Vigenere cipher; however, as I was following the tu-
torial in the Cryptol documentation, they provided the code for it as
an example, but left the Vigenere cipher to the reader. Seeing as the
Vigenere cipher can be viewed as a more complicated Caesar cipher,
solely using the Vigenere cipher proved to be an apt introduction.

As with any cipher, in order to encrypt a message, a key is needed.
Essentially, the message and the key are aligned. If the key is smaller
than the message, it is repeated until each letter of the message is
aligned with one of the key. Then, each letter of the message is
right-shifted according to the numeric value (a=0, b=1, etc...) of the
aligned letter in the key (i.e. if the message’s letter is ’c’, and the
key’s is ’b’, corresponding to a shift of 1, then the resulting cipher
text would be ’d’). See figure 1 for an example of this algorithm.
Decryption of this cipher is simply reversing the shift direction
based on the key.

3.2 SHA1 Hash Function
In order to provide a broader comparison of cryptographic functions,
I have chosen to implement a hash function in addition to the cipher
described in the following subsection.While the SHA1 hash function
is technically not a secure hash function any more (Google recently
found a collision), this function contains the core complex ideas

to implement, such as how to pad the message, how to construct
the main word array based on the message, and how to set up
the recursive hash cycle. That is to say, implementing a stronger
variant of this hash like SHA256 mostly results in the change of
the initial hash values, longer blocks, and some slight changes to
the calculations in the core functionality, which is essentially more
copy-paste rather than testing the more difficult sections.

The way I learned about the design of the SHA1 hash function is
by reading RFC 3174[Eastlake and Jones 2001]. Because it’s more
complex details are easily accessible (and the algorithm itself is not
a focus of this report), I will only provide a basic overview. It should
be noted that this RFC also has corresponding C code, which was
not referenced during my own implementation, but the initial hash
values were used, as they are a part of the algorithm itself.

To start the algorithm, the message is padded with a ’1’, followed
by ’0’s, follwed by the message length, such that it can be easily
divided into 512 blocks of bits. 80 32-bit values are generated, where
the first 16 are simply the current block’s bits, and the remaining
are a series of XORs of specific prior blocks. The current hash value
is represented as 5 blocks. For 80 iterations, the first block’s value
is modified based on the aforementioned values, and a function
(that varies based on the iteration number) of the three following
segments. The remaining blocks are then shifted block-wise (with
the second block also being shifted bitwise). The remaining values
are then combined to form the current hash value, which is then
fed into the next block, if any, or used as the final result.

3.3 DES Cipher
The last cryptographic function I implemented was the DES cipher,
which, like any cipher, requires both a key and a message to encrypt.
As with the prior function, this one also is no longer secure, but
still provides a good example comparison between Cryptol and C
due to its use of permutations and a unique form of indexing a
table dependent on disjoint bits. This was also implemented last
as it seemed to be the most complex variant, and so follows the
desired difficulty curve. For this section, I was originally going to
implement the RSA cipher, but the problem with using that as a
comparison is that its difficulty does not rely on the complexity
of its operation, but rather the ability to represent large primes
and perform exponentiation on them. This would both make it
more difficult to test whether I have a working example, while not
providing an interesting implementation to work on, though the
representation of the large required numbers might have been an
interesting concept to compare.

The way I learned about the DES cipher is by reading the federal
information processing standards (now outdated due to the insecu-
rity of DES)[National Institute of Standards and Technology 1995]
that described this algorithm in detail. Again, I’ll only provide a
summary of the algorithm and leave the more specific details to the
reference. The base algorithm functions on 64 bit blocks of data that
can be chained together external to the DES algorithm itself, so I
only focus on the core functions.
Before the encryption takes place, the key used to encrypt is

broken into 16 different subkeys that are generated via a series
of permuatations and left-circular shifts on each half of the key.

, Vol. 1, No. 1, Article . Publication date: December 2017.

On the Use of Cryptol, a Cryptography Domain Specific Language • :3

Fig. 2. Overview of DES encryption, originally in [National Institute of
Standards and Technology 1995]

With these subkeys, encryption of the data can begin. The message
first undergoes a permutation, followed by 16 iterations. In each
iteration, the left half of the block is XOR-ed with a function of
the right hand side and one of the 16 subkeys. This modified half
becomes the new right side, while the right side (unmodified in this
iteration) becomes the new left side. See figure 2 for clarity. The
function of the key and right side involves permuting the message
into a 48 bit block, which is XORed with the corresponding subkey.
This is then split into 8 6-bit blocks, where the end bits and the four
middle bits provide the indices to a table of values that is used to
replace them. After all 16 iterations have been performed, a final
permutation is performed.
Given the encryption algorithm, decryption is trivial: just run

the encryption algorithm with the order of subkeys reversed. This
works because the two initial and final permutations of the message
are each other’s inverse.

4 RESULTS
Overall, this project was successful in the two main goals I set to
achieve: to learn how to use Cryptol to implement cryptographic
algorithms, as well as garner an understanding of the tradeoffs in
using a DSL like Cryptol versus a production ready language like C.
At a high level, the barrier of entry to Cryptol was slightly higher
than I had anticipated because of its functional paradigm, and the
only experience I’ve had with that so far is OCaml. In particular,
understanding how the type system worked took a bit of getting
used to. However, once I had become familiar with it, implement-
ing the algorithms proved to be a better experience than C. In the
subsequent sections, I will give a more detailed description for each
algorithm, wiht a discussion first on the process of learning Cryptol,
followed by a comparison with the experience of implementing it
in C.

4.1 Vigenere Cipher
Implementing the Vigenere cipher was not intended to be a difficult
problem to solve, but rather a simple way to ease into the language,
and it proved as much. It allowed me to get a better feeling of how

one of Cryptol’s core constucts, comprehensions work. While not
unique to Cryptol, in fact it’s style is seemingly directly taken from
the underlying language, Haskell, it fits very cleanly with the desired
applications. A comprehension looks very similar to set notation:

[shiftL (keyL, messL) | messL <- message | keyL <- (cycle key)]

Instead of constructing a set, it builds up an array iteratively, and
is used in place of any loops. It takes in letters one at a time from
the message and a cycle of the key (generated via lazy evaluation
of an infinitely looping function called ’cycle,’ implementation not
shown), feeds it into the shifting function, and uses that value as the
next letter of the cipher text. This style of generating arrays is what
I used most in the subsequent implementations, as it seems to be
the sole method of constructing arrays (aside from explicit appends).
One thing to note about this style is that it is very readable.
Likewise, the C implementation was also fairly easy because C

allows chars to be cast to ints without any issues, so obtaining the
letter shifts was not a problem. Performing the shift itself required
using modular arithmetic as opposed to the use of an infinite cycle,
so the two implementations required two different styles but neither
were particularly advantageous over the other with such a simple
design.

4.2 SHA1 Hash Function
Implementing the SHA1 hash function is where the difficulties of
learning a new language, particularly one that is strongly typed,
comes into focus. The first major roadblock was implenting the
padding function; however, doing so granted a better understanding
of the type system. As discussed in Section 2, types are expressed in
terms of length, but you have to ensure that there is no ambiguity in
the type of a function, i.e. [n]->[m] may be invalid because m could
be anything. Instead, a slightly awkward expression is needed: [n] ->
[((n+65)/512)*512+512], which means that the input is of size n, and
the output is the total size of the 512 bit blocks used after padding
(65 referring to the minimum number of bits that are added). While
it is a bit awkward, it does force the user to be more aware of what
the function is doing, and helps to promote correctness, at least to
the degree of getting the lengths correct.
The next confusing segment came with stringing together the

hash functions. One of the common patterns in Cryptol is to re-
peatedly append to the end of an array. This is done through the
use of comprehensions, as described in the aforementioned section.
However, there are multiple ways to use these; one is to repeatedly
construct the full arrays and append that to the end of an array,
thereby creating an array of ararys. The other is to do repeatedly
construct the elements themselves, then put them in an array after.
My first instinct was to construc the arrays each time; however this
results in severe slowdown. The SHA1 hash function performs 80
iterations of the core hashing function. However, with my initial
implementation, after 12 iterations, there would be a slowdown of 5
seconds, and by 18 iterations, it would perpetually hang. Only by
calculating each block of the current hash individually could I make
it run in a reasonable time. This points to one of the frustrating
things about functional languages: its opaque structure. Even now,

, Vol. 1, No. 1, Article . Publication date: December 2017.

:4 • William Kovacs

I am still not sure why my initial method caused such a massive
slowdown (perhaps a constant reallocation of arrays needed).

The C implementation proved trickier due to its data representa-
tion in memory. Again, implementing the padding function is where
the initial difficulty began; however, in C, it is because the implemen-
tation is not as intuitive as in Cryptol, particularly with appending
the length to the end of the padded block. In my implementation,
I used strlen() to retrieve the length of the message. Too late did I
realize the slight error I made via this method: strlen() returns an
unsigned int, which only supports up to 32 bits, but the specification
allows for up to 64 bit lengths. While I lack the time to correct this
error, the major change needed would be to not use strlen(), but
rather crawl over the bits, keeping track of its length in an unsigned
long, until a null character is reached. Contrast this approach with
that of Cryptol’s, whose type system already takes care of retrieving
this length. However, I do not know how its memory management
is handled in such a case, or even how to test sending over 500 Mb
to be hashed. For most reasonable applications, supporting only up
to 32 bits is still sufficient though.
Again regarding padding, appending its length to a message re-

quires more memory management (to set up the new space), as
well as lots of bit shifting that needs to be done carefully in order
to ensure that the endianness of the int representation does not
intefere with the transfer (as in the case of a naive transfer). While
there were other spots that shared this need for such delicacy in C,
this particular example is a solid demonstration of the difference
in expressivitiy and readability of the code as seen with the C code
below:

char ∗ padMessage (char ∗ toPad) {
uns igned i n t msgLen = s t r l e n (toPad) ;
s i z e _ t addPad = (512 − (msgLen ∗ 8+9 6) % 5 1 2) / 8 ;
addPad = addPad + msgLen + 9 6 / 8 ;
uns igned char ∗ padded = c a l l o c (addPad , 1) ;
i n t i = 0 ;
f o r (i = 0 ; i < msgLen ; i ++) {

padded [i] = toPad [i] ;
}
padded [i]=0 x80 ;
msgLen ∗= 8 ;
/ / Append l eng t h to end
padded [addPad −4] = (msgLen >> 24) & 0 x f f ;
padded [addPad −3] = (msgLen >> 16) & 0 x f f ;
padded [addPad −2] = (msgLen >> 8) & 0 x f f ;
padded [addPad −1] = msgLen & 0 x f f ;

r e t u r n padded ;
}

and the Cryptol code:

padMessage : { n } (f i n n , 64 >= width n)
=> [n] −> [((n + 6 5) / 5 1 2) ∗ 5 1 2 + 5 1 2]

padMessage msg = msg # [True]
(z e ro : [rem]) # ((n) : [6 4])

where type rem = 512 − (n + 6 5) % 512

Clearly, the Cryptol code not only is more succint, but even at a
glance, it is understandable what is happening, as long as you know
that # is the append operator. As mentioned in the discussion of
types, Cryptol represents a bit as either "True" or "False", so trying
to append [1] instead of [True] results in type error, which is a slight
detriment due to its readibility. Overall though, its clear how the
append functions in a more concise manner.

In order to verifymy code as I was running it, I referenced example
digests to see what the values should be at the corresponding steps
provided by NIST[National Institute of Standards and Technology
2017b]. In order to verify my final versions, I compared my output
to that of an online SHA-1 generator[SHA [n. d.]], and found that
the final implementations match those of the generator. Inputs were
tested to stress the different aspects of the algorithm, ensuring that
it works for input that fits in 512 bits with the padding, those with
multiple blocks, and those with padding causing the block size to
be extended.

4.3 DES Cipher
While the SHA1 hash function was a good followup for exploring
Cryptol, requiring thorough understanding of the basics of Cryptol
and its type system, the DES cipher introduces even greater com-
plexity with its dependencies on individual bit manipulation via
permutations and the table lookup indices. However, this difference
was more noticeable in the C implementation than the Cryptol one.
In Cryptol, because everything is defined in terms of bits these types
of interactions were very intuitive. For instance, when performing
any of the permutations, all that is needed is a comprehension like:
"permKey = [key@x | x:[8]<-keyP]". A translation of this is: for
each bit of the permuted key, take the x’th bit of the original key
according to the permutation matrix. Succint and clear.

A similar statement can be used to extract the bits required for the
table lookup during each iteration. Moreover, when this extraction
occurs and used to index, the new arrays (2 and 4 bits in length),
are interpreted as the corresponding integer values.

Meanwhile, in C the difficulty curve from SHA1 to DES increased
a fair amount due to this extra bit manipulation. For instance, my
implementation of the permutation function contains a for loop
iterating over the following lines:

newBitVal = (toPerm [cha r Ind]
& (1 < <(7− b i t I n d))) >> (7− b i t I n d) ;

t oRe tu rn [i / 8] | = newBitVal << (7− i % 8) ;

Contrasted against the one liner of Cryptol, this version is much
clunkier andmore difficult to parse, particularly due to the numerous
bit shifts required. Furthermore, having to split up up the permu-
tation index into a char index and the bit index of that char adds
a level of abstraction which further removes the implementation
from the underlying idea. However, by C’s design, both of these are
necessary because char’s have to be 8 bits long.

A similar issue is experienced with the 6 bit block extraction, but
a more challenging aspect is the shifting of a key to generate the
sub keys. The length of the original key is 56 bits, which is then split
into 28 bit halves for processing. I chose to represent these halves as

, Vol. 1, No. 1, Article . Publication date: December 2017.

On the Use of Cryptol, a Cryptography Domain Specific Language • :5

arrays of chars, which makes the splitting of the key easier, but adds
additional overhead to the acual shifting. An alternative would be
to represent them as ints, and add overhead between splitting and
joining, but making the shifts easier (with care taken to zero out
any excess bits). In retrospect, the latter may have been an easier
approach, as with the way I did it, there was a need to keep track of
the overflow between chars that seems more difficult than the extra
string to ints conversion.

To further emphasize the expressiveness of Cryptol lets look at the
number of lines in each implementation: Cryptol had 151 lines, and
C had 239 (granted about 50 are representations over the necessary
permutation). While the number of lines of an implementation may
not always be a valid comparison, in this case I feel like it presents a
decent heuristic to demonstrate the succintness with which Cryptol
can express an algorithm vs C. This is because this increase in line
number seems to be from requisite expansions as can be gathered
from the code above, as setting up the loop and indices is alo needed.
Indeed, an extra 90 lines just from the expected extra lines, such as
brackets for if statements and loops, seems quite unlikely.
In order to verify my results, I compared them to sample input

and output for the 3DES algorithm provided by NIST [National
Institute of Standards and Technology 2017a], which is possible
because 3DES is simply DES applied three times to a block of code,
using a different key each time. Because the DES algorithm only
acts on 64 bits and there is no standard for padding, only this type
of core algorithm can be verified.

5 CONCLUSION
Overall, the Cryptol language presents itself as a very expressive lan-
guage for the purposes of implementing cryptographic algorithms,
especially when compared to those used commercially, such as C.
This difference boils down to how Cryptol effectively captures the
requisite ideas to allow for easy bitwise manipulations. The strict
type system employed also helps to focus the development process
by forcing cognizance of the resulting lengths of the bits.

However, this comes at a price of speed: even with just the basic
correctness tests that I performed, I noticed that the Cryptol im-
plementation would be slightly, but noticeably, longer than their C
counterpart. Even so, such a slowdown could be expected, as it is
designed for the purposes of prototyping and serving as a reference.
Even if not used for the final implementation, having a Cryptol
counterpart aids in the development of a C one as it allows for easy
comparisons of the varoius functions. Furthermore, there is an entire
tool suite behind Cryptol that helps with verifying algorithms in C
that I did not have the time to explore, which furthers its usefulness.
Cryptol seems to be a strong alternative for the use of research and
using as a reference.

REFERENCES
[n. d.]. SHA1 online. http://www.sha1-online.com/. ([n. d.]). Accessed: 2017-12-8.
D Eastlake and P. Jones. 2001. US Secure Hash Algorithm 1 (SHA1). RFC 3174. RFC

Editor. 1–8 pages. https://www.rfc-editor.org/info/rfc3174
Galois, Inc. 2016. Programming Cryptol. Portland, OR. https://cryptol.net/files/

ProgrammingCryptol.pdf
National Institute of Standards and Technology. 1995. FIPS PUB 46-3: Date Encryp-

tion Standard (DES). https://csrc.nist.gov/publications/detail/fips/46/3/archive/
1999-10-25

National Institute of Standards and Technology. 2017a. Block Ci-
pher Modes of Operation. https://csrc.nist.gov/CSRC/media/Projects/
Cryptographic-Standards-and-Guidelines/documents/examples/TDES_Core.pdf

National Institute of Standards and Technology. 2017b. Secure Hash Algorithm. https:
//csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/
documents/examples/SHA1.pdf

, Vol. 1, No. 1, Article . Publication date: December 2017.

http://www.sha1-online.com/
https://www.rfc-editor.org/info/rfc3174
https://cryptol.net/files/ProgrammingCryptol.pdf
https://cryptol.net/files/ProgrammingCryptol.pdf
https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25
https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/TDES_Core.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/TDES_Core.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA1.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/SHA1.pdf

	1 Summary
	2 Background
	3 Approach
	3.1 Vigenere Cipher
	3.2 SHA1 Hash Function
	3.3 DES Cipher

	4 Results
	4.1 Vigenere Cipher
	4.2 SHA1 Hash Function
	4.3 DES Cipher

	5 Conclusion
	References

