
An Analysis of Various LUA Class Implementations

Evan Liang

Stanford University

Abstract

Classes are an integral part of C and C++, yet completely lacking from the basic Lua library. There are
many different tradeoffs and improvements that must be considered when building a class implementation,
such as memory usage vs speed, optimizing instance creation vs data access, and whether or not building an
accelerated C version is worth it. As it turns out, forgoing memory constraints and allowing each class to
retain its own copy of the virtual method table can result in runtime improvements of up to 9-10 times, while
utilizing a custom external C implementation can result in runtime improvements of a factor of 2-3 times.
Which improvements are worth it will change for every use case, but the quantitative data comparing them is
all here to help make the right decision.

I. Background

Classes are a familiar concept to those that
have worked with Object-Oriented Program-
ming languages before. A class is essentially
a template for creating objects, allowing the
programmer to define a single set of methods
and state and then reuse it. However, as a rel-
atively light scripting language, Lua does not
come with its own built in class implementa-
tion. The goal of this project is to build several
class implementations in Lua and analyze the
tradeoffs made between expressiveness and
performance in each.

II. Approach

First, we define the class system that we are
going to build. The basic class system is a
single-inheritance model with public methods
and public data members. Private data mem-
bers were excluded due to the difficulty of
implementing them without introducing se-
curity vulnerabilities (i.e. ensuring that they
absolutely cannot be modified outside of the
class). Metamethods are classified under meth-
ods and therefore are also inherited from par-
ent to child.

i. Design One

This design is virtually equivalent to the assign-
ment two design. Children maintain references
to the their parent and metatables are used to
define fallbacks. That is, if a method or data
member is not found in a child, then the lookup
continues within the parent, and so on, until
the base Object class is reached. The only ex-
ception to this are the metamethods, for which
each class stores all of its own metamethods
in addition to all the metamethods from all its
parents, grandparents, and so on.... Therefore,
this design stores minimal information, as only
the data members and methods unique to the
child are stored within the child object (with
the exception of metamethods).

ii. Design Two

In C++, when a class defines a virtual func-
tion that can be overwritten in a child class,
most compilers will use something called a
vtable for lookups. This vtable (short for vir-
tual method table) is an array of pointers to
the virtual functions. When a subclass inherits
from a superclass, it simply copies the super-
class’s vtable, rewriting the pointers to virtual
function that it overwrites, and adding any
pointers to virtual functions that it itself may
define. This design utilizes much more space
per class than Design One, since each class now

1

has its own table of pointers to the inherited
functions, instead of only its own functions,
and then performing function calls to inherited
functions by traversing up the inheritance tree.

Because Lua stores references to functions
inside of its tables, an approximation of this
design can be created in Lua by making a copy
of the parent’s methods and then adding in the
child’s methods (to modify function references
to overwritten methods and add methods spe-
cific to the child). This is essentially the same
way metamethods were inherited in Design
One, but now extended to methods as well.
Method calls of inherited methods are much
faster in this implementation since it no longer
has to fall back to the parents methods (and
potentially grandparent, and so on).

iii. Design Three

Most Lua class implementations will make
use of Lua metatables to define fallbacks for
method calls. However, one other thing to con-
sider is how to deal with inherited data mem-
bers. In the naive Design One implementation,
data members were treated similar to methods.
If access were requested for a data member,
and it was not found in the child class, then
lookup of the data member continued in the
parent class.

This design, based off of the "Yet Another
Class Implementation" (cited in References),
takes advantage of the fact that we don’t actu-
ally have to perform this lookup! Since there is
no concept of private variables and therefore
no need to check whether or not modifying
a particular data member is valid, there is no
need to perform this lookup any more. Instead,
any data value that requires initialization can
be initialized in the constructor (which also
means that the parents constructors and so
on... may need to be called as well). Any data
member that does not require initialization can
just be created when first referenced.

iv. Design Four

As a scripting language, Lua, by itself, does not
provide the programmer the control necessary

to perform micro optimizations compared to
a language like C or C++. Luckily, Lua’s C
API allows us to create a high performant C
implementation of the class system that can
then be used within Lua.

The design of this implementation is virtu-
ally identical to Design One, except now im-
plemented in C. Each class is represented as a
userdata object, containing a name to uniquely
identify the class, and then a methods and data
table.

The function to create a new class takes in
three parameters, a unique name for the class,
the unique name associated with its parent
class ("object" if none), and then a table of meth-
ods (which may include a constructor). There is
no parameter for a table of data members since
the data members can be created lazily (i.e. in
the constructor or when first referenced).

With these three parameters, we now have
enough information to setup the new class. We
begin by adding a "new" function to the passed
in methods class, which the user can call to
create new instances of the class. We then grab
the metatable associated with the parent class
(using the luaL_getmetatable function), and
then assign it as the metatable for the passed
in methods table. We finish up by creating a
new metatable for the child class, and setting
the "__index" value to the passed in methods
table. This is sufficient to define all the fallback
needed to method calls.

This design was by far the most difficult to
implement due to having to deal with the vir-
tual stack and having to chain multiple API
calls to achieve a simple request. Of course,
wading through all those unhelpful segmen-
tation fault messages are worth it in the end,
because this kind of control is precisely what
allows us to write a more efficient class im-
plementation that is devoid of the excess com-
mands that are not necessary.

v. Testing Framework

We created a testing framework in order to
evaluate the performance of each class im-
plementation. The following aspects of each

2

class were tested: instance creation, method
call (for inherited and non-inherited methods),
data access (for inherited and non-inherited
data), and metamethod access (for inherited
and non-inherited metamethods). Over 50 000
individual trials were run for each measure-
ment, and a cumulative time for all trials was
recorded. There were no tests for the creation
of the class table since there is no realistic situ-
ation in which we would define so many new
classes as to make this runtime significant.

III. Results

We use Design One, the original assignment
two class implementation, as the basis of com-
parison for the rest of the designs. The follow-
ing figures depict the performance of Design
One.

Figure 1: The effects of child depth on instance creation
in Design 1

Child depth can be defined inductively in
the following manner:

1. The base class which inherits only from
the object class has child depth 0.

2. For any pair of child and parent classes,
the child has a child depth of 1 greater
than the child depth of the parent.

From Figure 1, we can see that for Design 1,
the number of parents, grandparents, etc. that
a class has does not impact the time it takes to
create a new instance of that class.

Figure 2: The effects of child depth on the method calls
and data access

Figure 2 depicts a roughly linear relationship
between child depth and the time required for
method calls and data access. This makes sense
since Design 1 utilizes fallbacks to implement
inheritance, and therefore for each additional
ancestor a class has, there is one additional
set of methods and data members to search
through.

Figure 3: The effects of child depth on the metamethod
calls

Since Lua does not allow metatables to have
metatables, all of our implementations requires
each class to have its own copy of all of
its metamethods as well as all of its parents
metamethods. This means that child depth
does not have an affect on the runtime of call-
ing metamethods. This implementation strat-

3

egy is consistent across all of our class designs,
and therefore, the graphs for metamethod calls
using Design 2 (D2), Design 3 (D3), and Design
4 (D4) all look virtually identical to this one.

i. Design Two Results

As mentioned in our approach section, we ex-
pect the main difference between Design Two
and Design One to be a reduced call time for
inherited methods.

Figure 4: A comparison of method call runtime between
Design One and Design Two

From this figure, it is apparent that we were
correct in our expectations. The fact that each
class owns its own reference to each inher-
ited method means that the time required for
method calls in Design Two remains constant
even as the child depth increases. The addi-
tional work of creating a reference to each in-
herited method is done when the class is de-
fined, which only happens once per class, and
is not benchmarked by our testing framework.
Our testing framework also does not measure
the amount of memory taken up by our pro-
grams, and therefore, the only two drawbacks
of Design Two do not manifest themselves in
our benchmarks. For the remaining three tests
of instance creation, data access, and metadata
access, Design Two performs similarly to De-
sign One.

ii. Design Three Results

From our discussion of our approach for De-
sign Three, we expected the data access test
to perform better in Design Three, but for in-
stance creation test to suffer as a result.

Figure 5: A comparison of instance creation runtime
between Design One and Design Three

Figure 6: A comparison of data access runtime between
Design One and Design Three

Indeed, as can be seen from the figures, go-
ing from linear to constant in child depth for
data access caused us to go from constant to
linear in child depth for instance creation. In-
stance creation was affected due to the possible
need to call each ancestor’s constructor. There

4

is no way to definitely say whether Design One
or Design Three is better, it all depends on the
use case. For a use case where only a couple
instances of the class are declared, but we ac-
cess many data members of these instances,
Design Three may be better. However, if we
require many instances of the class, and will
only rarely access the data members of each in-
stance, Design One could have the advantage.

iii. Design Four Results

We expected Design Four to perform better
than Design One, due to the use of the Lua
C API and being able to define very precisely
what we wanted to do. However, we did not
know by what factor this improvement would
be.

Figure 7: A comparison of instance creation runtime
between Design One and Design Four

With the data from the figures, we can see
now that there was an almost two-fold increase
in the runtime of both instance creation as well
as method calls when using the C implemen-
tation. The linear relationship between child
depth and method call runtime is retained in
Design Four since we still rely on metatables
in order to find the proper functions to call.
This improvement in runtime is also not as
drastic as the improvement seen in Design
Two; however, it also does not come at the
cost of additional memory usage. For realistic

Figure 8: A comparison of method call runtime between
Design One and Design Four

use cases, classes will most likely have a child
depth of less than ten. This puts Design Four in
a sweet spot between Design One and Design
Two, where it is approximately twice as fast as
Design One, yet less than fifty percent slower
than Design Two. In fact, as long as we are able
to express our design of a class implementation
using the Lua C API, there seems to be no rea-
son not to convert it into a C implementation,
especially for something that would be used as
frequently as a class implementation.

References

[Julien Patte, 2013] "Yet Another
Class Implementation for Lua."
https://github.com/jpatte/yaci.lua

5

	Background
	Approach
	Design One
	Design Two
	Design Three
	Design Four
	Testing Framework

	Results
	Design Two Results
	Design Three Results
	Design Four Results

