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1 SUMMARY
As technology has become more and more integrated in our lives,
it is becoming more and more important to be able to trust in the
security of the systems we use every day. Just like you would not
trust a bank with no vault or want to store your mail in an unlocked
room, it is of utmost importance to ensure that our technology is
also as secure as possible.
In this report, I will attempt to demonstrate the importance of

memory safe systems programming languages by showing that
memory safe languages are the best defense against the most critical
security exploits.
First, I will begin by introducing memory safety and showing

how memory safety and security are intimately linked. Next, I will
examine in detail some well-known examples of memory related
exploits in order to better understand how to defend against such
exploits. Then, I will examine the status quo of defenses against
such exploits at the platform level, runtime level and language level.
Finally, I will explore how Rust is a unique systems programming
language because it guarantees both memory safety and full control.

Through this research, I have determined that bringing memory
safety to systems programming languages is the best defense against
the most important security exploits. Although there is still merit
to platform level and runtime level defenses, these will inevitably
remain in a constant state of war between attacker and defender
because they do not address the fundamental problem of being able
to write insecure programs. Rust is an example of such a memory
safe programming language that enforces safety and allows for full
control and will therefore be instrumental in creating a new class
of exploit resistant programs.

I hope that this report will demonstrate that it is very di�cult to
write vulnerability free programs in memory unsafe languages like
C and C++ and encourage more of a move towards modernizing the
systems programming landscape.

2 INTRODUCTION
2.1 What is memory safety?
In general, to say that a program or language is “memory safe”means
that this program or language guarantees to never encounter any
memory related errors such as bu�er over�ows, dangling pointers,
or double frees. While it is possible to de�ne memory safety as a
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long list of speci�c memory errors that it should prevent, this is not
very intuitive. In “SoK: An Eternal War on Memory”, the authors
group these errors by de�ning memory safety as preventing all
spatial and temporal memory errors. A memory error is spatial if
it is an error because of reading or writing to a speci�c memory
address that should not be valid. A memory error is temporal if it is
an error because of, as the name would indicate, reading or writing
to a memory address that should no longer be valid due to a timing
issue. While this de�nition of memory safety may seem vague for
now, these concepts of spatial and temporal memory errors will
continue to appear throughout the remainder of this paper and will
hopefully become more clear.

2.2 Why is memory safety important?
The next question that should be on your mind is asking yourself
why it is important to ensure memory safety. Beyond avoiding
logical errors or crashes, it is imperative to ensure memory safety
because of the security risks that take advantage of the widespread
lack of memory safety that exists in many execution contexts.
Although it is not immediately clear why memory safety could

lead to a whole class of security vulnerabilities, this becomes more
apparent if we take a step back and think more abstractly. Any com-
puter program will have some elements of data and some elements
of control. For example, in the context of a banking program, the
data of this program would refer to the elements of the program
that keep track of the bank account numbers, their balances, PINs,
etc. The elements of control of this program refer to the logical
backbone of the program that ensures that withdrawals are only
possible after being authenticated via PIN, that a bank balance can
never be negative, etc. If we continue examining this example, there
will never be any issues assuming that the elements of control of
the bank are properly implemented and they cannot be changed by
anyone else.
However, the issue that arises in computer programs if there

is not guaranteed memory safety is that the data and control of
programs are mixed. This is an important design �aw that allows
for non-memory safe programs to be vulnerable to what is known
as control �ow hijacking, where the attacker is able to take over
control of a program by arbitrarily rerouting its control �ow for
nefarious purposes. While in other systems such as the telephone,
the separation of data and control is possible, in most cases the
best a computer program can do is to ensure memory safety in
order to avoid a large amount of control �ow hijacking attacks.
In the next section, we will explore in detail a sampling of a few
quintessential control �ow hijacking attacks that occur because of
a lack of memory safety.
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3 MEMORY RELATED CONTROL FLOW HIJACKING
ATTACKS

In order to explore concrete examples of control �ow hijacking
attacks that exploit a lack of memory safety, we can examine a few
examples of quintessential security vulnerabilities in C, a language
that is notorious for lacking any memory safety. These examples
also demonstrate how easy it is to inadvertently write code with
critical vulnerabilities. Finally, we will conclude this section by
showing how memory safety errors are very prevalent in “real
world” software, even today.

3.1 Bu�er overflow: spatial
Bu�er over�ow attacks take advantage of the classic layout of a
function stack in order to hijack the control �ow of a program. In
particular, the canonical bu�er over�ow exploit will �gure out a
way to overwrite past the end of a bu�er allocated on the stack in
order to overwrite the return address of the stack frame. This allows
the attacker to control which set of instructions to execute next,
thus hijacking the control �ow of the program.
Let’s consider the following C code:

void func ( char ∗ s t r ) {
char buf [ 1 2 8 ] ;
s t r c p y ( buf , s t r ) ;

}

In this function, our stack frame looks as follows:

Fig. 1. Diagram of stack frame layout

In this code, since there is no bounds checking in strcpy or in
the C language in general, if the string str is longer than 128 bytes
long, we will over�ow the bu�er and be able overwrite the stack
frame pointer and return address. In this case, the simplest way to
concretely exploit this vulnerability is to place some arbitrary code
(ie. code that opens a shell) in the buf variable, then modify the
return address to point to the beginning of buf.
The buf variable would then look something like:

0 144 bytes
[--SHELLCODE-- ADDRESS_OF_BUF] content

While this example is quite simple, the same idea of bu�er over-
�ows appear in many other exploits.
For example, even in a seemingly worst-case scenario of only

being able to over�ow a single byte, it is possible to successfully
construct a control �ow hijacking exploit.

Let’s consider the following C code:

# i n c l u d e < s t d i o . h>

func ( char ∗ sm )
{

char b u f f e r [ 2 5 6 ] ;
in t i ;
for ( i = 0 ; i <=256 ; i ++)
b u f f e r [ i ]=sm[ i ] ;

}

main ( in t argc , char ∗ argv [ ] )
{

i f ( a rgc < 2 ) {
p r i n t f ( " m i s s ing � a rg s \ n " ) ;
e x i t ( � 1 ) ;

}

func ( argv [ 1 ] ) ;
}

The error in this code is very subtle: instead of using i<256, the for
loop in func has i<=256.
If we go back to our stack frame layout diagram, we can see

that the only thing we will be able to modify in a 1 byte over�ow
is the last byte of the saved stack frame pointer ebp. This seems
relatively innocuous, but if we consider the CALL, LEAVE, and RET
procedures that occur during a function call and return, we can see
why this will lead to an exploitable vulnerability. Recall that in a
typical computer architecture, the stack grows down, esp refers
to the top (low memory address) of the stack, ebp points to the
current stack frame starting at locals and eip points to the current
instruction.

CALL foo():
• Push arguments onto the stack
• Push eip onto stack (saved return address)
• Push ebp onto stack (saved stack frame)
• Set ebp (start of new stack frame) = esp (top of old stack
frame)

• Decrement esp in order to push stack variables
LEAVE foo():
• Reverse the CALL procedure
• Shrink stack frame by setting esp (top of stack frame) = ebp
(bottom of stack frame)

• Restore ebp to the saved stack frame by popping the stack
RET foo():
• Restore eip to the saved return address by popping the stack

Our goal in this exploit is to point esp to a memory address
containing the address of our exploit code such that when the eip
is restored by popping the stack starting from esp, we will set the
current instruction eip to point to the start of our exploit code.

The whole exploit can be summarized as follows:
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• Execute func(): over�ow the bu�er by one byte and change
the value of the last byte of the saved ebp in func.

• LEAVE func()
– Shrink stack frame by setting esp (top of stack frame) =
ebp (bottom of stack frame)

– Restore ebp to the saved stack frame we modi�ed by pop-
ping the stack.

• RET func(): restore eip to the saved return address by pop-
ping the stack

• We are now back in main(). When we LEAVE main():
– Shrink stack frame by setting esp (top of stack frame) =
ebp (modi�ed by exploit)

– Restore ebp to the saved stack frame by popping the stack.
• RET main(): restore eip to the saved return address by pop-
ping the stack starting from the esp which we modi�ed

In this exploit, our bu�er would look something like this:
[no ops][EXPLOIT_CODE][&EXPLOIT_CODE][EBP_ALTERING_BYTE]

where we set EBP_ALTERING_BYTE such that the saved ebp has value
of the address of the start of &EXPLOIT_CODE in our bu�er - 0x4 (in
order to account for popping ebp when we LEAVE main()). This
exploit has an important caveat: if the caller’s ebp is not located
right above the destination bu�er, then we will not be able to modify
its last byte to point to the correct memory address.
Of course, these two bu�er over�ows are by no means the only

exploits that involve over�owing some data structure to overwrite
a memory location that controls the �ow of the program. Other
examples include bu�er over�ows that target exception handlers or
function pointers, heap over�ows which are very similar to bu�er
over�ows similar but instead of targeting stack variables, instead
attempt to overwrite control �ow memory on the heap like virtual
tables in C++.

There are also a multitude of exploits that use some sort of bu�er
over�ow as the underlying exploit such as integer over�ows where
a bounds checking fails because of a large positive signed integer
over�owing into a small negative integer or even a format string
exploit which takes advantage of the internal stack pointer in format
string functions like printf and the %n parameter which allows
writing to addresses on the stack.

All of these exploits are examples of spatial memory errors be-
cause in some way or another, they all attempt to overwrite memory
at a location that is critical to controlling the �ow of the program
which should be protected in a memory safe program as these re-
gions are not within the valid range of memory regions.

3.2 Dangling pointer: temporal
Unlike the bu�er over�ow examples which are spatial memory
errors, dangling pointer exploits and related errors are temporal
memory errors. A “dangling pointer” occurs when a pointer to a
freed object remains accessible.

As we will see through the examples in this section, the exploits
occur because of valid memory functions like free() that are used
in invalid combinations like freeing the same object twice. These
exploits rely on knowing details of the speci�c memory allocation
strategies of the underlying system, so I will attempt to explain a
well-known exploit in the heap allocator included in the GNU C

Library as well as a more general explanation of the use-after-free
exploit present in many web browsers.

3.2.1 Traditional double-free exploit: unlink() example. The unlink()
exploit is a historical exploit in the GNUC library glibc that has since
been patched that relies on a temporal error of freeing the same
memory address twice. Let’s consider a simpli�ed demonstration of
this exploit:

i n t func ( char ∗ arg ) {
char ∗ p ;
char ∗ q ;
p = ma l l o c ( 5 0 0 ) ;
q = ma l l o c ( 5 0 0 ) ;
f r e e ( p ) ;
f r e e ( q ) ;
p = ma l l o c ( 1 0 2 4 ) ;
s t r n cpy ( p , arg , 1 0 2 4 ) ;
f r e e ( q ) ;

}

In this code, we allocate two chunks “p” and “q” of size 500 bytes
each. Then, we free both of these chunks, but importantly leave
the pointers dangling to now invalid memory. If we then allocate
another chunk of size 1024 bytes, we will re-use the same heap
memory that was previously occupied by the two chunks “p” and
“q”. This means that we can construct malicious chunks of memory
at the address previously occupied by “q”. We can also note that “q”
is freed once again after we allocate this memory.
In order to see why this can lead to an control �ow exploit, we

need to consider that in the glibc allocator, memory is stored in
“chunks” in a doubly linked list sorted by size. Therefore, when
a chunk is freed, the allocator will attempt to coalesce multiple
adjacent free chunks by creating one larger chunk and removing
this chunk from the doubly link list it was initially assigned to.

This is where the unlink() macro comes in:

/ ∗ Take a chunk o f f a b in l i s t ∗ /
# d e f i n e un l i nk ( P , BK , FD ) { \

FD = P�> fd ; \
BK = P�>bk ; \
FD�>bk = BK ; \
BK�> fd = FD ; \

}

Equivalently, we have:

FD = ∗P + 8 ;
BK = ∗P + 1 2 ;
FD + 12 = BK ;
BK + 8 = FD ;

In particular, within our memory that we copy into “p” from arg,
we will create two fake chunks of memory.

The �rst chunk will start at “q” and will contain the payload of
arbitrary code we want to execute, and have a forward pointer (fd)
to the second chunk.
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The second chunk will start after the end of the �rst chunk and
have forward pointer fd set to be the address we want to overwrite
- 12 (ie. the return address of a function) and backwards pointer bk
set to be the address of our payload in the �rst chunk. We also need
to set the second chunk to have be a free chunk so that we will
remove it from the doubly linked list when we free the �rst chunk.

Thus, when we call free(q) for the second time, we will indeed
call the unlink() macro on the second chunk in an attempt to
coalesce the two freed chunks. Therefore, we will set FD + 12 = BK
or equivalently overwrite the address we gave (for example, return
address of a function) with the address of our payload. An astute
reader may notice that we will also overwrite some memory within
our payload with some valid memory address. However, this will
most likely not be valid assembly op codes, so we need to craft a
special payload that includes a short jump instruction in order to
“jump over” these invalid instructions and continue with the rest of
our payload.

3.2.2 Use-a�er-free. The main idea behind use after free is as
follows. First, a valid object is allocated and freed. Next, we assume
that there is a dangling pointer to this object that remains accessible.
At this point, it is possible to allocate a new object that will now
be placed in the same memory space as the �rst object. This object
will be crafted maliciously, for example setting a function pointer to
some arbitrary code. Finally, the original object is re-used (hence the
name use-after-free) but since it now points to a malicious object,
the arbitrary code will run.

Use-after-free vulnerabilities are very common in web browsers
(speci�cally, the web browser engines) and di�cult to detect be-
cause as mentioned before, they are a temporal memory issue that
are much more subtle to detect than obviously incorrect behavior
like writing data to invalid memory addresses. In addition, mem-
ory management is often di�cult to understand in static analysis
because the free and use of an object could be quite separated and
occur because of complicated reasons.
In the “DangNull” paper that presents a runtime system of de-

tecting use-after-free and double-free, the authors note that use-
after-free is a very common exploit. For example, from 2011-2013,
680 of the total 929 total security vulnerabilities in Chromium were
use-after-free vulnerabilities. Of those, 13 were considered to be of
critical severity and 582 were considered to be of high severity.

3.3 Memory exploits in the real world
Although it may seem from the examples that we have explored so
far that memory safety errors that lead to serious security vulnera-
bilities are few and far between and only occur in these specially
crafted scenarios that would never really happen in practice, this is
far from the truth. A large portion of all the code in real world appli-
cations today is written in languages that are not memory safe like
C or C++, for reasons that we will discuss in a later section. Because
of this, they are vulnerable to exploits similar to those explored in
this section.
For example, let’s consider recent security advisory updates to

Apple’s macOS, Google’s Chrome, and Mozilla’s Firefox.
In Apple’s most recent security advisory updates from October

31st, 2017 and December 6, 2017, there were a total of 26 memory

related �xes out of 44 total security �xes in October and 14 out of
20 in December.

In Google Chrome’s most recent security update for Chrome 63,
of the �xes that were contributed by external researchers 9 of 19
mention some sort of memory corruption issue.
In the most recent Firefox security updates for Firefox 57, there

have been 4 critical exploits related to speci�c attacks mentioned in
this paper such as use-after-free, bu�er over�ows, and othermemory
corruption bugs that: “showed evidence of memory corruption and
we presume that with enough e�ort that some of these could be
exploited to run arbitrary code.”
As we can see from the Firefox security updates, not only are

memory related exploits still prevalent in modern software, but they
are also highly critical and can allow for the worst case scenario of
arbitrary code execution. In 2013, the internal emails of Hacking
Team, a blackhat company that purchases zero-day exploits (ie.
exploits that are unknown to the software vendor), were leaked to
the public. In an analysis of these leaked emails, all the exploits that
the Hacking Team ended up purchasing for tens of thousands of
dollars were memory safety exploits like use-after-free and integer
over�ows.
Now that we have seen some concrete examples of memory re-

lated security exploits and understand that they really do cause the
most severe security issues in real world code, we will now explore
how to guard against such exploits.

4 DEFENSES AGAINST MEMORY EXPLOITS
In this section, we will begin by discussing some of the non language
level defenses that can be added to a non memory-safe language.
These consist platform level defenses and runtime level defenses that
aim to defend against exploits in vulnerable code and static analysis
to detect these vulnerabilities before even running the program.

Next, we will explore the current status quo of programming level
defenses and why we still use memory unsafe languages when they
are so prone to security vulnerabilities.

4.1 Platform Level
The unifying idea behind platform level defenses is to not allow for
the exploit code to be run in the �rst place.

4.1.1 DEP: Non-executable memory. Many of the exploits we
covered in the previous section rely on being able to divert the
control �ow of a vulnerable program to a memory address whose
contents an attacker controls in order to execute arbitrary code.
Therefore, a sensible idea to guard against this is to set stack and
heap memory as non-executable. In this case, even if an attacker was
able to divert control �ow to some malicious memory address, the
computer would refuse to run the code from this memory address.

While this was a reasonable idea, unfortunately there are severe
limitations such as requirements to have an executable heap in
certain programs (ie. programs that rely on JIT compilation, for
example JavaScript engines in web browsers). In addition, there
is a technique called Returned Oriented Programming (ROP) that
can severely undermine the e�cacity of marking stack and heap
memory as non-executable.
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In a traditional memory related control �ow hijacking attack, the
attacker will somehow manage to store the malicious code he wants
to execute somewhere in memory. In a ROP attack, the attacker will
skip this step and instead focus only on diverting the control �ow of
the program to an existing set of instructions (ie. in a shared system
library). These instructions (often called gadgets) are then chained
together in order to create the full exploit code.

4.1.2 ASLR: Address Space Layout Randomization. In order to
defend against ROP attacks and continue to strengthen the plat-
form level defenses, the next step was to add Address Space Layout
Randomization (ASLR). This defense technique randomizes stack
addresses, heap addresses, and shared library addresses in order to
increase security through obscurity. If the attacker can’t reliably
know where to divert the control �ow to, then it will be harder to
create a working exploit.
However, the downfall of ASLR is that almost any information

leak will lead to being able to bypass ASLR. If we have a dangling
pointer whose address we can know at runtime, then based on
this information it may be possible to determine the randomized
locations of everything else by computing it relative to the known
address. This allows for exploits that are completely reliable and
work every time. Another important �aw inASLR is that this defense
only works if it is applied consistently the executable and all of its
related libraries. If a non-ASLR library is loaded, then this memory
will be allocated deterministically and can be used to create a reliable
exploit.

Nevertheless, even without an information leak to bypass ASLR,
it is possible to write exploits that are not guaranteed to work. Of
course, a brute force attack is theoretically possible. However, this is
highly unlikely to actually work in practice as the space of memory
addresses is much to large for this to work with any degree of
reliability. We can improve this by using a “NOP slide” in order to
increase the size of the target. A NOP slide is simply many no op
instructions in a row so that we don’t have to “land” directly on
the start of the exploit code, but instead can land anywhere in the
NOP slide and continue on to the exploit code. This will increase
the probability of a brute force attack and can help, especially on
32 bit architectures which have lower total number of addresses.
Another technique called partial overwrites relies on the fact that
ASLR only randomizes the higher order bits of an address. In this
way, if we can �nd a “good” instruction like jmp within the scope
of this range of addresses, then it is possible to construct an exploit
that will be variably reliable depending on how many higher order
bits we need to use.

4.2 Runtime Level
The unifying idea behind runtime level defenses is to detect when
an exploit is being run and stop execution.

4.2.1 Stack defenses. Stack canaries are a defense that target
bu�er over�ows in particular. If we add a randomized canary to the
end of the stack frame, in between the local variables and the saved
frame pointer and return address, then it is possible to detect when
this stack canary has been overwritten (ie. by a bu�er over�ow) and
then simply crash the program. In more detail, at the start of the
program’s execution a random value is chosen for the stack canary

which is then inserted into every stack frame. Before returning
from every function, the stack canary is veri�ed. Verifying the stack
canary at this time makes sense as many bu�er over�ow attacks
attempt to overwrite the saved return address in the current stack
frame.

Another idea in order tomake stack based over�owsmore di�cult
is to rearrange the layout of the stack by having the local variables
section of the stack grow downward away from the arguments,
saved return address and saved stack frame. In addition, a stack
canary is still used in between these two sections.
Although these defenses seem like they would work quite well,

they simply increase the di�culty of creating exploits. In particular,
one example of bypassing stack canaries is to take advantage of how
Windows handles exception handling. In the stack frame, exception
handlers are placed above the canary and before the saved stack
frame pointer and return address. If we can control an exception
handler, then when an exception is triggered we can jump directly
into our exploit code without checking the stack canary!
In addition, it can also be possible to extract the value of the

canary if it remains unchanged. For example, we can consider a
server who restarts a process automatically upon crashes using
fork(). This means that the canary will continue to have the same
value and we can extract the random value by continually trying
to modify bytes of the canary one by one until we do not crash the
program. If the program does not crash, then we have successfully
extracted that byte of the canary and we can move onto the next
byte until we have extracted the entire canary.

One last stack defense called StackShield works by keeping a copy
of the saved return address and saved stack frame pointer in a safe
place in memory that is di�cult to corrupt such as in the stack’s
data segment. During the function return process, check to make
sure that the current saved return address and saved stack frame
pointer match the saved copies. However, overwriting the saved
return address is not the only way to hijack the control �ow of a
program. For example, we can modify the Global O�set Table which
deals with the position of system calls in memory. If a system call is
used in the program, we will modify its address in the Global O�set
Table to our own shellcode and then we can hijack control without
modifying either the saved return address or the saved stack frame
pointer.

4.2.2 Control Flow Integrity. A more general approach to pre-
venting control �ow hijacking attacks is Control Flow Integrity.
This defense technique uses static analysis of a program’s source
code in order to construct a control �ow graph that represents valid
control �ows for the program. In theory, this can prevent malicious
control �ow hijacking as they would not appear on the control �ow
graph and therefore be blocked. While this seems great in theory,
in practice existing control �ow integrity are not very practical be-
cause the static analysis portion requires intimate knowledge of the
inner workings of the software, which is not always available for
commercial products. In addition, it can impose a large performance
overhead which can be anywhere from 25% to 50%. Finally, as with
the other techniques discuesd in this section, CFI is not a perfect
defense and can still be bypassed using a more advanced version of
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Return Oriented Programming that uses gadgets that the control
�ow graph considers valid.

4.3 Static Analysis
The last defense I will brie�y cover before going into language
level defenses is static analysis tools such as Coverity. These tools,
similar to Control Flow Integrity, aim to statically analyze the code
for security vulnerabilities and other bugs. Their website speci�cally
names some memory safety related issues such as “dereference of
NULL pointers”, “bu�er over�ows”, and “use of resources that have
been freed”.
Of course, such tools will not be able to fully understand the

complexity of every program, but they are able to successfully �nd
more obvious issues. Another �aw is that they rely on identifying
known exploits, so vulnerabilities that are not yet well known to
the security community may not be found in static analysis.

4.4 Language Level
Although platform level defenses, runtime level defenses, and static
analysis increase the di�culty of exploiting a lack of memory safety,
as we saw when discussing these defenses, they simply create a
constant state of war between creating a new defense and attackers
come up with a more advanced way to exploit them. In addition,
almost all of these aforementioned defenses incur some performance
cost which can make them impractical.
Instead of relying on these somewhat ad-hoc solutions that at-

tempt to add memory safety to programs written in memory unsafe
languages, it seems logical to add memory safety guarantees at a
more fundamental level. If we only used memory safe programming
languages, then many if not all of these exploits would not even be
possible as the programming language itself would prevent us from
writing programs with these memory safety related vulnerabilities.

The question we need to ask ourselves now is why is there so
much memory unsafe code still out there? The reason is that pro-
gramming languages lie on a spectrum of safety vs. control. Most
modern languages today are memory safe because they rely on
automatic memory management techniques like garbage collection.
Although this does not necessarily mean reduced performance as
modern GC techniques such as generational GC can be just as fast
as manual memory management, because the process is automated
these GC’d languages cannot o�er the same amount of raw control
as manually memory managed languages like C or C++. In addi-
tion, although performance may not be an issue, many garbage
collected languages also impose a runtime requirement which in-
creases the amount of computing resources needed. These resources
may not be available on certain devices such as embedded systems.
Finally, some applications such as operating systems really do need
to control every aspect of memory management. In a GC’d world,
there is some element of randomness because the memory manage-
ment is automatic. Deterministic memory management can only be
achieved with languages that o�er full control.

Despite the fact that memory unsafe languages are still very preva-
lent today which leads to many security issues, we have still come
a long way from the days of pure C. In particular, C++ o�ers many
memory related abstractions through a system of smart pointers
and move semantics which allow for a much “safer” programming

experience. However, C++ is still a fundamentally memory unsafe
programming language because although these safe coding stan-
dards exist, there is no enforcement of these rules at the language
level. In addition, these coding standards do not prevent all types of
memory safety issues. In particular, dangling references, use after
free, and iterator invalidation are still quite common, even in C++
code that adheres to these modern standards.

In conclusion, although language level defenses have come a long
way since the age of writing everything in C, there will always be
a need for a programming language that o�ers full control over
memory management. While modern C++ has abstractions that
allow for more safety than plain old C, these coding standards are
not enforced by the language and do not prevent all types of memory
safety issues. In the next section, we will explore how Rust is unique
because it o�ers both guaranteed memory safety at the language
level and full control.

5 RUST
In the introductory slides to Rust, the creator of Rust, Graydon
Hoare, calls Rust “Technology from the past, come to save us from
the future” because Rust leverages programming language tech-
niques that have already existed before in a unique way to resolve
issues such as memory safety and concurrency that are the bane of
systems programmers. From its conception, Rust was designed to be
a memory safe systems programming language by combining the
memory safety of modern, GC’d languages with the absolute control
and zero-cost abstractions of systems programming languages like
C or C++.

5.1 How does Rust enforce memory safety?
Let’s begin our discussion of Rust by seeing how memory safety
is enforced at a language level. Unlike C++ where memory safety
abstractions exist but are not enforced by the language, in Rust
memory safety is guaranteed by the type system and rigorous bound
checking.
As seen in lecture, the concepts of ownership, borrowing and

lifetimes allow Rust to avoid aliasing (multiple references to same
object) and mutation occurring at the same time. To brie�y recap:

• Ownership (type T): every resource has a unique owner who
cannot free or otherwise mutate its resource while it is bor-
rowed.

• Shared borrow (type &T): multiple entities can borrow an
object from the owner at the same time, but they cannot
mutate the object.

• Mutable borrow (type mut &T): a single entity can borrow an
object from the owner withmutation privileges, thus avoiding
aliasing.

Finally, the concept of lifetimes allows us to reason temporally about
ownership and borrowing. For example, the lifetime of an object
tells us when a borrowed object will be returned to its owner or an
object will no longer be valid. In Rust, the lifetime of a value is tied
to the lexical lifetime of its name.

Although the idea of avoiding simultaneous mutation and aliasing
is a good way of explaining memory safety in Rust, it does not map
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exactly to our previous de�nition of avoiding all spatial and temporal
memory errors that we used in previous sections.
In terms of avoiding spatial errors, Rust’s type system allows

for a great deal of compile-time and runtime bounds checking. For
example, the array type that is often exploited in C stores both type
information and length. If we try to access or write to an index that
is out of bounds, Rust will panic at runtime and crash the program,
resulting in a denial of service instead of a security vulnerability.
Although bounds checking does incur some runtime cost, using
iterators instead of a for loop will avoid these runtime costs.
If we recall the 1-byte over�ow example, we can construct a

similar example in Rust as follows:

fn main ( ) {
l e t mut buf = [ 1 , 2 , 3 , 4 ] ;
f o r i i n 0 . . bu f . l e n ( ) + 1 {

buf [ i ] = 0 x90 ;
}

}

Running this code will result in the following error message:
thread �main� panicked at �index out of bounds:
the len is 4 but the index is 4�, tmp.rs:9:9
note: Run with �RUST_BACKTRACE=1� for a backtrace.

Similar bounds checking exists for heap allocated values therefore
also avoiding spatial errors related to heap over�ows.

In terms of avoiding temporal errors, the ownership and lifetimes
in Rust will not allow for these types of errors to occur. For example,
if we consider the insidious use-after-free vulnerability, Rust will
catch this error at compile-time by determining that the object does
not live long enough to be used at that point:

fn take <T>( _x : T ) { }

fn main ( ) {
l e t x = Box : : new ( 0 x90 ) ;
t ake ( x ) ;
p r i n t l n ! ( " { } " , x ) ;

}

In this example, the take() function will take ownership of x and
therefore free x upon the end of the function. This will result in the
following compiler error:

e r r o r [ E0382 ] : use o f moved va lue : x
[ . . . ]

On the other hand, a similar function in C:

i n t t ake ( i n t ∗ x ) {
f r e e ( x ) ;
r e t u r n 0 ;

}

i n t main ( ) {
i n t ∗ x = ( i n t ∗ ) ma l l o c ( s i z e o f ( i n t ) ) ;
∗ x = 4 2 ;
t ake ( x ) ;

p r i n t f ( "% d \ n " , ∗ x ) ;
r e t u r n 0 ;

}

This will compile just �ne and in fact print 42 as output.

5.2 Proving Rust’s safety guarantees
In order to conclude this section on the guaranteed memory safety
of Rust, we can begin by questioning whether or not an ownership-
based type system is enough to guarantee memory safety. Although
it seems to work in practice, is it possible to mathematically prove
the safety of Rust? Another question one might have at this point is
that we have not yet discussed the elephant in the memory safety
room: unsafe.

Even if we assume that Rust’s type system is enough to guarantee
memory safety, the unsafe keyword allows the programmer to
bypass these type safety checks. Essentially, the programmer is
telling the Rust compiler to trust that the code enclosed in the
unsafe keyword is really safe even though the type system might
not be able to understand it. This is also necessary in order to
interface with other languages like C through a FFI.
Although it may seem surprising that a language with such a

literally unsafe feature can still be guaranteed to be memory safe, it
is in fact possible to prove Rust’s safety guarantees even with unsafe,
with the caveat that unsafe code blocks must be fully encapsulated.
This means that if someone else uses these functions containing
unsafe but do not use unsafe themselves, then their code will
be free of any unsafe or unde�ned behaviors. This is particularly
important as much of Rust’s core infrastructure uses unsafe in
its implementation, so if it were not possible to guarantee safety
if unsafe is ever used, then the entire memory safety guarantee
would crumble.

In the paper “RustBelt: Securing the Foundations of the Rust
Programming Language”, the authors provide an extensible proof
of Rust’s soundness by giving a formal and machine-checked proof
for the soundness of a realistic subset of the Rust and a few of its
most important libraries. This proof is extensible because it provides
formal guidelines for the requirements of any new unsafe libraries
that are added to the Rust language. This formal proof actually led
to �xing a real soundness issue in the Rust language and provides a
reasonable degree of proof that the Rust language itself is sound.

6 CONCLUSION
In conclusion, we can now see why memory safety is important
because of its severe implications for security. The lack of memory
safety is the leading cause for control �ow hijacking attacks that
are still very prevalent even in today’s modern software. Although
defenses exist at a platform or runtime level, these ad-hoc defenses
that are trying to �x an inherently unsafe programming model are
not su�cient to stop all attacks and there will always be a constant
war between attacker and defender. In addition, these defenses come
at a performance cost and some are too costly to even implement
practically.
A better solution would be to continue to adopt memory safe

languages at all levels, including systems levels languages which
have notoriously been slow to change from their origin as nicer
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assembly language. Unlike the ad-hoc defenses at a platform or
runtime level, language level memory safety tackles the root cause
of memory safety issues by not allowing memory unsafe programs
to be written in the �rst place. Despite the fact that most modern
languages are memory safe, there is and will always be a necessity to
have a systems programming language that o�ers full control over
resource management. Until recently, there has been no mainstream
language that o�ers both memory safety and full control so C and
C++ have continued to dominate this space. However, I believe
that languages like Rust that provide both safety and control will
and should continue to grow in popularity as we realize that it is
almost impossible to maintain any guarantee of safety and therefore
security in existing systems programming languages.
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