
Simple λΠ-interpreter for matrix computation
Nicholas Huang

Department of Computer Science, Stanford
nykh@stanford.edu

ABSTRACT
This project to extend the simply-typed Lambda calculus λ→ to
have types dependent on constant value. In particular this language
will be used to check the validity of matrix computation.

KEYWORDS
dependent type, matrix computation, numeric computation

1 BACKGROUND
Historically, Matrix computation and linear algebra support were
not implemented as core language feature but usually with third-
party library support, except in mathematics-oriented language like
Matlab, Mathematica, or Octave. Most of the languages used for
matrix computation are scripting languages in the framework used
in our course. In those languages, dimension check is performed at
run-time, by checking the dimension information contained in the
matrix struct. numpy a python numerical computation library, is a
good example, because it is widely used in engineering andmachine
learning research [6].Whenwe check the type of an arbitrary vector
or matrix (numpy differentiates between vector and matrix as two
different classes), they are shown as simply numpy.ndarray and
numpy.matrixlib.defmatrix.matrix. Their types do not encode
the dimension information.

Intuitively, a compiled language is beneficial for matrix computa-
tion because potentially it can perform optimization, parallelization,
as well as catching errors at compile time, including dimension
checking. One of the popular matrix computation library for rust is
called nalgebra [1]. This language does (optionally) encode matrix
dimension in its types. But it does so very clumsily. Because in Rust,
type cannot include any term, the library defines types U1 through
U127 so as to allow the user to write matrix with type information
that include dimension, for example
Matrix<N, U2, U4, S>

ecti which means a 2 × 4-Matrix of scalar type. The type level
integer representation is in something similar to Church encoding,
but instead of unary representation it uses a binary representation
[2]. This can be seen as a work-around to the lack of dependent
type in Rust. And at least since 2016, there has been an on-going
discussion about the possibility of adding (constant) dependent type
into Rust [7]. This speaks to the demand for such type constructs.

In this project my goal is to extend the simply-typed lambda
calculus λ→! to also support a simple version of dependent type
that depends on constant integer, and allow simple linear algebra
program written in it to be dimension-checked at compile time. The
actual goal of choosing to do this project, however, is to understand
the dependent type. This is a logical extension on our discussion
on Type Theory, following lambda calculus, and polymorphism.
However as it turns out, introducing true dependent type to the
type system does not make the implementation more complicated.

Figure 1: Lambda Cube diagram. Source: https://en.wikipedia.
org/wiki/Lambda_cube

Now we must discuss the central topic of the project.

1.1 Dependent Type
Dependent type is a well-studied concept in type theory. To il-
lustrate the bigger picture, refer to the Lambda Cube diagram
shown in Figure-1. The Lambda cube is a framework to under-
stand the relationship different different type systems, proposed
by Barendregt [3]. In this cube diagram, each vertex corresponds
to one type system. At the origin in the bottom left is the simply
typed lambda calculus (λ→). The three axes refer to the three ways
λ→can be extended. The second axis going in the vertical direction
introduces polymorphism, i.e. value depending on type. The sec-
ond axis projecting into the page leads to weak lambda omega λω ,
which introduces type functions, i.e. types that depend on other
types. These concepts are in fact all present in the Lam2 interpreter
we wrote for Assignment 4. The new axis is the horizontal axis in
the cube diagram. The new dependency that was allowed was for
type to depend on value, i.e. dependent type. A lambda calculus
including dependent type is denoted λP on the diagram, but we
will continue using λΠ in the rest of the text.

There is a vast literature about dependent type and type theories
in general. I however focused on the implementation aspect of the
type system. Coq is a well developed proof assistant language that
contains dependent type [4]. A more programming-oriented exam-
ple is Agda, a programming language first developed as a PhD thesis
by Ulf Norell with proof support. It has syntax similar to Haskell.
Another dependent type language with a Haskell-like syntax is
Idris [5]. Dependent type allows Idris to define type that depends

https://en.wikipedia.org/wiki/Lambda_cube
https://en.wikipedia.org/wiki/Lambda_cube


on value as shown in Figure-2. (The total keyword invokes the
totality checker which is less relevant to the topic).

infixr 5 :

data Vect : Nat -> Type -> Type where

Nil : Vect 0 a

(::) : (x : a) -> (xs : Vect n a) -> Vect (n + 1) a

total

app : Vect n a -> Vect m a -> Vect (n + m) a

app Nil ys = ys

app (x :: xs) ys = x :: app xs ys

Figure 2: Vector example in Idris

Theoretically, adding dependent type to the simply typed lambda
calculus is actually very simple. In the original lambda with type
functions, we had pairs of Abstraction and Application for term
(Lam, App) and for type (TLam. TApp), to reflect the fact that value
can be computed from value and types, and type can be computed
from types. But as types can now be computed with value as well,
we will not differentiate functions on the value and type levels
anymore but instead define a single dependent function space
that can take either type or value and map to either type or value.
In fact, in this system, types and values are now unified.

2 APPROACH
I extended the simply typed Lambda calculus interpreter from As-
signment 4 to include dependent type. To do this I had to

(1) Add a new type called Type, which is the type of types.
(2) Merge the Lam type and TLam term to a new type called Pi,

with the signature of that of the Fn term. The idea is the old
TLam will now be expressed with its argument taking the
Type type defined above

(3) Merge the Forall type with the Fn type.

3 RESULT
Overall I acknowledge my implementation was very imcomplete.
I have not implemented the matrix computation portion in the
system. I wish to do so before the presentation.

But in terms of understanding dependent type system, I feel I
have made good progress.

REFERENCES
[1] 2017. nalgebra Quick Reference: matrices and vectors. (2017). Retrieved Dec 15,

2017 from http://nalgebra.org/quick_reference/#matrices-and-vectors
[2] 2017. Struct typenum::uint::UInt. (2017). Retrieved Dec 15, 2017 from https:

//docs.rs/typenum/1.5.1/typenum/uint/struct.UInt.html
[3] Henk Barendregt. 1991. Introduction to Generalized Type Systems. J. Funct.

Program. 1, 2 (1991), 125–154.
[4] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program

Development. CoqArt: The Calculus of Inductive Constructions. Springer Verlag.
[5] Edwin Brady. 2017. Idris: A Language with Dependent Types. (2017). Retrieved

Dec 15, 2017 from https://www.idris-lang.org/
[6] NUMPY 2017. Numpy. (2017). Retrieved Dec 15, 2017 from http://www.numpy.org/
[7] ticki. 2016. RFC: const-dependent type system. (June 2016). Retrieved Dec 15,

2017 from https://github.com/rust-lang/rfcs/pull/1657

2

http://nalgebra.org/quick_reference/#matrices-and-vectors
https://docs.rs/typenum/1.5.1/typenum/uint/struct.UInt.html
https://docs.rs/typenum/1.5.1/typenum/uint/struct.UInt.html
https://www.idris-lang.org/
http://www.numpy.org/
https://github.com/rust-lang/rfcs/pull/1657

	Abstract
	1 Background
	1.1 Dependent Type

	2 Approach
	3 Result
	References

