Investigation of GADT applications and usage

PARTH SHAH, Stanford University, USA

Generalized Algebraic Datatypes, or GADTs, extend algebraic datatypes by allowing an explicit relation between type
parameters and constructor definitions. They can be used in numerous applications like modeling programming languages,
maintaining invariants in data structures and in implementing constraints in domain-specific languages. In our project, we
discuss GADTS and provide some of their use cases. We also mention our experience while using them in practice and discuss
both advantages and disadvantages associated with them.
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1 INTRODUCTION

Generalized Algebraic Datatypes(GADTs), extend usual sum types in two ways: constraint on type parameter
may change depending on the value constructor and some type variables may be existentially quantified. They
were introduced in OCaml in version 4.00 and as mentioned in the OCaml-manual 1%, we can write a constructor
for GADT in the following way:

constr-decl ::
constr-name : typexpr { * typexpr } -= typexpr

type-param ::
| [variance]

The rightmost typexpr in the above constr-decl is the return type and needs to be explicitly mentioned. This
return type must use the same type constructor as defined and have the same number of parameters as in the
definition. The underlying information can be retrieved by using pattern matching on the constructor types.
GADT advantages are two folds: they allow to incorporate invariants in type definitions and to use these invariants
to reduce the dynamic checks needed.

The idea that we can incorporate types within constructor definitions, makes using GADTs a very attractive
option while implementing an evaluator for a language. The blog post[*] describes an evaluator built for a
very simple language using this idea. We have already built an evaluator for typed lambda calculus as part of
assignments during the course. We used ADTs in the assignment and had to implement a complex type checking
module to ensure that the terms are well-formed. GADTs provide an alternative solution, which is much cleaner,
intuitive and completely remove the need for this separate module. This aspect was our prime motivation to
further explore this language extension for our project. During the course, we had explored the Sum, Product and
the Existential types and the concept of GADTSs builds over those ideas to provide extra flexibility and features.
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Algorithm 1 Definition using ADTs

module Term = struct
type binop = Add | Sub | Mul | Div
typet =
| Int of int
| Var of string
| Lam of string * Type.t * t
| App of t ™ t
| Binop of binop *t * t
| Tuple of t * t
| Project of t * direction
| Inject of t * direction * Type.t
| Case of t * (string * t) * (string * t)
end

The rest of the paper in organized as follows. In section 2, we discuss our implementation of an evaluator for
typed lambda calculus and compare with our experience with the implementation using ADTs. In section 3, we
discuss a data structure implemented using GADTS, a red-black tree, and the challenges faced while implementing
it. In section 3.4, we provide the conclusion for our project.

2 USING GADTS FOR EVALUATING TYPED LAMBDA CALCULUS

One of the canonical example to showcase use of GADTs is to use them for representing higher-order abstract
syntax trees. As the first step of our project, we also implemented an interpreter for a typed lambda calculus. We
decided to pick the same language model that we used in Assignment 3 and 4 during the course. There were two
major reasons for this. Firstly, we already had our experience during the course while using ADTs to solve the
problem, so it provided a reference for our GADT experience. Secondly, the language model after the extensions
of Assignment 4 was non trivial and had several complex constructs. We also added the boolean type and if
statement to show how GADTs could be easily used to extend the language model.

2.1 Advantages of GADTs

Definitions in 1 and 2 provide the Term definition for implementation using ADTs and GADTs respectively. We
now mention the advantages of using GADTs over ADTs for implementation.

2.1.1 Type Safety. Using GADTs, we are able to associate types with the expression. This information is
extremely valuable when we want to implement type safety. expr in definition 2 is associated with a type and
we can define the return types for different constructors like the GiInt returns int expr and GBool returns a bool
expression. We can use these to define other constructors and provide compile-time type checks rather than doing
it at runtime as in the case of ADTs. Taking the example of GBinop: binop * int expr * int expr -> int expr, we
have defined that it would take two int expressions as input and return an int expression. This is not possible
in the case of ADTs where the corresponding expression is Binop of binop * t * t which provides no restriction
on the type of t. Similarly, we see it is extremely simple to denote these relations for other expressions as well
like GIf, GApp and GCase. We did not need the type checking module at all for our implementation which used
GADTs. We were able to express all the constraints and relations using the typed expression notation.

2.1.2  Compiler Optimization. Mentioning types with the expression and constraining typed expressions as
input also allows the compiler to optimize the code. Again taking the example of Binop, since we have mentioned
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Algorithm 2 Definition using GADTs

module Term = struct
type binop = Add | Sub | Mul | Div
type (a, ’b) sum = Left of a | Right of ’b
type (a, ’b) tuple = Pair of ’a *’b
type _ expr =
| GBool : bool -> bool expr
| GIf : bool expr * ’a expr * ’a expr -> "a expr
| GEq : ’a expr * ’a expr -> bool expr
| GLt : int expr * int expr -> bool expr
| GInt : int -> int expr
| GBinop : binop * int expr * int expr -> int expr
| GApp: Ca->’b expr) * ’a expr -> b expr
| GTuple: ’a expr * ’b expr -> (’a, ’b) tuple expr
| GProjectLeft: (Ca, ’b) tuple expr -> ’a expr
| GProjectRight: (’a, ’b) tuple expr -> ’b expr
| GInjectLeft: ’a expr -> ('a, ’b) sum expr
| GInjectRight: ’b expr -> (a, ’b) sum expr
| GCase: (a, ’b) sum expr * (a -> 'c expr) * b -> ’c expr) -> 'c expr
end

that the input expressions are restricted to type int, the compiler now does not flag warning when we match
the inputs only to ints and further can produce a better switch case code after compilation, getting rid of some
unnecessary check conditions. This is further covered in more detail in 8.1.3 in[?]. To validate our theory about
compiler optimization we decided to run tests to benchmark Binop operation. The GADT implementation was
approximately 4 times faster compared to the earlier implementation. 10 operations took around 1 second in the
GADTized version and 4 seconds in the ADT version. No typechecker was invoked while benchmarking ADT, so
the actual time taken would be even more in the case of ADTs.

2.1.3 Readability. Terms, as defined in GADTs, provide more information about their working, inputs, and
outputs than the corresponding terms in ADT. Again considering the example of Binop, we know that it would
take two int expressions and return an int expression. From the ADT definition, we get no such information. It
takes in two terms and returns a term. GADT expressions, in our opinion, seem to provide more intuition about
the function than the corresponding ADT expressions.

2.2 Disadvantages of using the GADT approach

While using GADT provide several advantages in type safety and optimizations, there are certain downsides to
using this approach as well.

2.2.1 Separate projection and inject functions. As seen in Definition 2 we have separate functions for projections
and injections instead of just one in Definition 1. The addition of type parameter in the expressions means that
ProjectLeft and ProjectRight no longer return the same expression(type ’a expr and 'b expr are not considered
same) and hence cannot be returned from different branches of the same match expression. Similarly, injectleft
and injectright returns expression with different types and cannot be merged together.
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Algorithm 3 Evaluator on GADT definition

let rec eval : type a. a Term.expr -> a = fun x ->
match x with
| Term.GBool (b) -> b
| Term.GInt (i) -> i
| Term.GIf (b, 1, r) -> if eval b then eval ] else eval r
| Term.GEq (a, b) -> (eval a) = (eval b)
| Term.GLt (a,b) -> eval a < eval b
| Term.GBinop(binop, 1, r) ->
(match binop with
| Term.ADD -> eval 1 + eval r
| Term.SUB -> eval 1 - eval r
| Term.MUL -> eval 1 * eval r
| Term.DIV -> eval 1 / eval r
)
| Term.GApp(a, b) -> eval(a(eval(b)))
| Term.GProjectLeft(t) ->
(match t with
| Term.GTuple(l, _) -> eval(l)

)
| Term.GProjectRight(t) ->
(match t with

| Term.GTuple(_, r) -> eval(r)
)

| Term.GCase(a, If, rf) ->
(match a with
| Term.GlnjectLeft(l) -> eval(Term.GApp(lf, 1))
| Term.GlInjectRight(r) -> eval(Term.GApp(rf, r))

2.2.2 Absence of Lam function. Our new implementation does not provide support for Lam function. Lam
function takes in a variable, the type of the variable and the body. The type of the body is not trivial to determine
and would require analysis of the body which can not be described with a simple constructor. Therefore, the type
of the operation can not be determined by the constructor and including it would break the whole type safety of
the implementation and we would have to reintroduce the type-checking module.

One round-about for this problem is to use OCaml built in functions. Using them instead of Lam in our
implementation provides the same type of flexibility and the expressiveness as the original language and also
makes type inference easier. Below is an example usage of GApp in our new implementation

Term.GApp ((fun (x: int)—>Term.GInt(x)), Term.GInt(1))

2.2.3 Complex function definitions. Using GADTs make the function definitions more verbose, cumbersome
and difficult to manage. Because of the introduction of types in definition of expr, we need to bind these types
before we can use them in the expression. The recursive implementation in 3 provides an example for this where
Type a.a Term.expr binds type variable a and which can be then used. This is very much like the existential
types definitions. Also, since expressions now involve types, we need to provide them with every instantiations.
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Algorithm 4 Type Definitions for RBTree

typez=7Z:z
type’ns=S:'n->'ns
module Node = struct
type black = Black : black
type red = Red : red
type (_,_, _) node =
| Null : (black, z, ’a) node
| BlackN : (_, 'n, ’a) node *’a * (_, ’n, ’a) node -> (black, 'n s, ’a) node
| RedN: (black, ’n, ’a) node *’a * (black, 'n, ’a) node -> (red, ’n, ’a) node

end
module RBTree = struct
type _ root =
| Root : (Node.black, ’1, ’a) Node.node-> ’a root
end

3 BUILDING RED-BLACK TREES USING GADTS

We mentioned in Section 1 that we can use GADTs to incorporate invariants in the type and we decided to
implement a data structure to further explore this aspect of relation. A red-black tree follows the given constraints:

e Every leaf node(Null) is black

o If a node is red then both the children are black.

o Every path from a node to any descendant leaf node contains the same number of black nodes
e The root node is always black

3.1 Type Design

We would like our type definition using GADTs to naturally inherit all these constraints. Our type design is
described in 4. The type z and s are singleton types and used to represent the black-height of a node. The type
node takes three parameters: color, black height and the type of value. We have described three different nodes
based on the data-structure invariants:

o Null: Leaf nodes. Color is set to black and black height is set to z

o BlackN: Black nodes which are not the leaves. It takes two children with same black-height(’n) and returns
a node with 'n s height.

o RedN: Red nodes. Both the children have the color black and same black height

The Tree root is defined to take a node with black color and return a root with the same type as the underlying
data in the node. As seen in the definition, it is very simple and intuitive to encode the data-structure rules in the
definition.

The major advantages of this scheme are that if we have a Tree root, we know for certain that the insert and
other operations would always work in the log(n) time and the tree is a Red-Black tree indeed as the rules would
not allow for anything else. These kind of guarantees are very useful from the user perspective and we get all
these just from defining our data in the right way.

However, this type definition is significantly difficult to maintain compared to a Sum based type definition. We
now describe the challenges faced during implementation.
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Algorithm 5 Insert Function Definition

let rec insert: type ¢ d I m a.(c, 1, a)Node.node -> a -> (d, m, a)Node.node

Algorithm 6 Indirection

type ’a type_node =
T: (’c, 'n, ’a) Node.node -> ’a type_node;;

3.2 Challenges faced

The presence of three parameters in the node definition makes it very complex to define functions over the node
type. Following are few of the major challenges that we faced followed by our way of countering them:

3.2.1 Base Algorithm cannot be used. The major concern that we realized as soon as we began our imple-
mentation is that the base pseudo-code which is widely available is not valid for our implementation. All the
pseudo codes always insert a red-node, which might make the tree invalid for a while and then the algorithm
proceeds to balance the tree. This implementation is not valid for us because of the stringent type definition. The
type-definition makes sure that all the nodes in the tree are valid nodes and we can not have the inconsistency
even for a while.

We tried researching the available solutions for this problem and found several implementations in Haskell.
Apart from being in a different language, the implementations used a separate context information or a lot of
helper functions making the code unintuitive and very divergent from the original pseudo code. We initially
thought to maintain a list of nodes on the path to the insertion nodes and then handle the conflicts in the list of
nodes, modifying them on the go. But this solution can not be used because all the nodes had different types and
can not be part of the same list. After a lot of thought, we decided to introduce black nodes in case of conflicts
and handle the conflicts while tracking back. It also involved introducing another level of abstraction to convey
the information to parent nodes about the potential conflicts. The final implementation is extremely verbose, but
is still able to maintain a resemblance to the original pseudo-code.

3.2.2 Inserts cannot return a node type. An insert function to add a new value to a tree rooted at Node n would
normally have a return type of Node but that is not straight-forward in the case of our type definition. Consider
the insert function defined in 5. The definition takes (c, [, a)Node.node and value of type a and return a Node
of type (d, m, a)Node.node. The return type node can have different color and also different black-height than
the original node, we, therefore, have to use different types and these types cannot be determined beforehand.
OCaml interpreter does not allow this kind of representation and this issue is further explained more in Section
8.4.2 in!?! and in the blog[). The main reason is that the above definition states that this is true for all possible
values of d and m while what we want to represent is that these values are true some values of d and m. We,
therefore, have to use a level of indirection to avoid this conflict. We used several different indirections in our
implementation, one of which is shown in 6.

3.2.3 More complex pattern matching. As mentioned in the above section, we have to use an indirection for
doing inserts on the node. This means that we now need more pattern matching to retrieve the information we
encoded earlier. This practice makes implementation a lot more verbose and difficult to understand. Further,
whenever the Nodes are now instantiated we need to ensure the subnodes are of the matching types, this includes
more explicit type checking and pattern matching to ensure this, even in the case when the user knows the type
is going to be correct based on the algorithm.
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3.3 Final Implementation

The final implementation of the insert and find operations red-black tree took a little over 170 lines. Although
the type definitions were extremely concise and intuitive, same cannot be said about the functions built over
those definitions. For the sake of convenience the code is made available on github(®.

We tested our code for correctness by inserting 10° values and then asserting the insertion using a find function.
The final black-height of the tree was 16 which is logarithmic in scale. The time taken for insertion for 10° values
was around 5 ms which validated that the insertion were indeed O(log n). The time taken in case of O(n) insertion
for even 10* values is 30 ms.

3.4 Conclusion

General Algebraic Datatypes provides an important language extension over the Sum type. While it is extremely
intuitive to encode constraints and types in the constructor definition, in our experience the functions that are
built over such types were more verbose and complex than their counterparts using ADTs. Writing the interpreter
for GADTized language was very convenient and concise. The use of types provide for compile-time type safety
which is a huge improvement and at the same time allows compiler to optimize the pattern matching leading to
faster execution, up to 4 times in the case of Binop as seen in 2.1.2.

Our experience while designing the data structure was completely different. While implementing the Red-black
tree we had to manipulate the underlying algorithm to use it in our setting. Even after that, the indirection
imposed by the use of GADT made the code unreadable and very inefficient to manage and debug. We found
that such indirection is a common disadvantage associated with GADT usage[¢]. The problem in the case of
evaluator involved only one parameter and was easy to manage but the data structure implementation involved
three parameters, greatly increasing the complexity for the subsequent operations and things got ugly pretty
quickly. The blog[®! also sheds light on this aspect.

Another major holdback for using GADTs is the lack of proper documentation for its usage. The official
implementation page ! is very concise and does not provide reasonable examples. The manual ') is very short
and does not explain the full complexity involved in the concept. The type inference is also very complex in
the case of GADTs and the given that the type is very important in constructor definitions and is needed for
instantiations, it compounds the problem. The workshop article *] sheds some light on how the type inference in
implemented in OCaml. ) and %) provide a more formal treatment for the type theory involved in GADTs.

Overall, GADTs look like an interesting language construct and they provide significant optimization over the
simplified ADT implementation by allowing for compiler optimizations. The fact that they are being used in
Jane Street!”) to optimize performance further strengthens the claim. However, lack of proper documentation
and complex example use cases in domains other than modeling languages has led to low public interest in
the domain. This project was meant to explore the topic and provide examples in modeling languages and
other domains(red-black tree). Through our experience, we were able to highlight both the advantages and
disadvantages associated with the concept. The list of resources compiled along the way can also provide a good
base for person who wants to learn about GADTs.
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