
A

Machine Learning Across Programming Paradigms

STEPHANIE CHEN, Stanford University

As the long-term importance of machine learning grows and as data processing becomes increasingly depen-
dent on large-scale distributed systems, functional programming languages have become a popular alter-
native to the standard Python approach to machine learning and data sciences. Here, I implement a small
machine learning library, consisting of a preprocessing transformer, a logistic regression classifier, and a
pipeline/chaining structure in Python and Scala in order to (subjectively) evaluate the individual experience
programming in these two languages in a machine learning context. I find that while Python’s language
and environment make it extremely easy to get started and quickly implement data transformations, its
flexibility and some unintuitive handling of classes can lead to poorly designed code. On the other hand,
while Scala is much more difficult to set up (especially outside an IDE) and difficult to start, its type system
combined with functional paradigms come together to form a more cohesive overall structure.

1. INTRODUCTION
In recent years, as the amount of data produced, collected, and processed around the
world has dramatically increased, the field of machine learning has exploded in popu-
larity and influence in both academia and industry. The effects of this relatively sud-
den growth can be seen all through everyday life; machine learning systems are now
in charge of predicting everything from the optimal route for food delivery drivers to
the credit risk posed by loan applicants.

A major enabling factor in these advancements in large-scale data processing has
been the development of effective distributed computing systems. As computing power
and memory have gotten cheaper while improvements in technology for raw processing
power have simultaneously slowed[2], distributed systems have been the key to scaling
machine learning and data analysis at all levels.

There has also been a recent upswing in the popularity of functional programming
languages, primarily due to this emergence of distributed computing as a standard.
Functional programming languages in their relative statelessness are especially suited
to parallel processing, compared to the more imperative languages used in machine
learning’s root fields of statistics and data science. In addition, as we hand over more
control of data and decision making to machine learning systems, it’s become increas-
ingly important that models are engineered to be scalable and reliable in the long
term, and statically typed functional languages seem to provide a built-in level of code
stability. Either way, functional languages are likely here to stay in the world of ma-
chine learning; this project aims to explore some of the user-level experience of this
paradigm shift.

1.1. Machine learning workflows
At its core, machine learning relies on series of transformations applied to data,
whether that data is input training data, test data, or data from the internal state
maintained by a model. Intuitively, this nature makes machine learning well-suited
to both the imperative and functional paradigms — imperative languages allow us to
efficiently access and manipulate data in memory, and functional languages allow us
to cleanly compose sequences of the transformations applied to that data.

In this project, I focused on a simple, minimal workflow of three steps: feature extrac-
tion, model training, and evaluation. The first two steps are briefly discussed below.

1.1.1. Feature extraction. Feature extraction involves the data-processing stages per-
formed on input data to create numerical input features for a model (not to be con-
fused with feature selection, which refers to the techniques used in actually deter-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 S. Chen

mining which features should be generated for a given purpose). For example, text
corpuses are often transformed into sets of word or n-gram counts, categorical fea-
tures (ex. “red,” “blue”) are encoded as some corresponding values, and missing values
in datasets are usually filled in with some kind of placeholder. In this project, I imple-
mented a simple scale-normalize feature extractor, in which input values for all given
features are normalized to mean of 0 and standard deviation of 1:

Xj =
Xj − avg(Xj)

std(Xj)
(1)

for column vector Xj corresponding to the data across all input samples for feature
j.

1.1.2. Supervised learning. Supervised learning involves training a model on an input
dataset of feature values as well as labeled target values representing the actual out-
put of some function f of the input values, with the goal of learning that function
f . Two of the most common uses of supervised learning algorithms are classification
and regression, where classification involves separating each data sample into one of
multiple classes and regression involves finding some parameters that represent the
relationship between the input data.

For this project, I implemented logistic regression for binary classification, which
involves minimizing the loss (error) on some learned hypothesis function. Determining
this function is equivalent to determining some weight vector θ over the input features
that minimizes the loss as follows[5]:

argmin
θ

J(θ) =
1

m

m∑
i=1

log(1 + exp(−y(i)θTx(i))) (2)

for m samples in input x and target y.
I used a stochastic gradient descent approach, which performs the minimization

above by “stepping down” the gradient of the loss function and updating θ accordingly
for some number of iterations or until convergence.

1.2. Functional programming
As I’m not very familiar with functional programming, a large part of this project
focused on learning standard structures and idiomatic expressions in functional pro-
gramming. In “pure” functional programming, programs are compositions of what are
effectively mathematical functions; programs in this style should maintain little to no
state and should operate on immutable data abstractions. Languages like Haskell are
considered “pure” functional languages, as they restrict the user to rules like the above;
in this project, I used Scala, which runs on the Java virtual machine, is object-oriented,
and can be written in an “impure” way with ex. statements with side effects.

1.2.1. Category theory. Many of the common structures and paradigms in functional
programming can be formalized through category theory, which is a branch of math-
ematics that I have no familiarity with and thus effectively do not understand at all,
though I tried to learn some basic concepts for this project. Category theory is “a gen-
eral mathematical theory of structures and of systems of structures”[4], which at the
level that was practical for me to understand means a theory to formalize how “struc-
tures” (data structures, code structures, etc.) and transformations interact in a way
that is overall consistent.

In this project, I wanted to learn more about monads, which in category theory is
defined as follows[3]:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Machine Learning Across Programming Paradigms A:3

Definition 1.1 (Monad). A monad T = 〈T, η, µ〉 on a category C consists of an endo-
functor T : C→ C on C, a “unit” η : IdC ⇒ T , and a “multiplication” µ : T 2 ⇒ T .

In practice, a monad is a kind of design pattern, somewhat visible in code structure
but more connected to the context of data structures, types, and operations. It’s a sort
of wrapper for a type that outlines certain behavior regardless of the type contained.
In Scala, T above is built into the way a Monad type wraps another type (C) without
transforming it, η is usually implemented as a function called pure or unit that wraps
C, and µ is called flatMap or bind and defines the way a monad instance wrapped in
itself (ex. a list of lists) resolves back to just a single “flat” instance of that type.

The monad structure was intuitively appealing for this project as it provides a way to
chain together a wide variety of operations within some consistent outer scaffolding,
which independently of its contents can track state and pass it down — much like
what’s needed for a model training workflow.

1.3. Status quo of programming languages in machine learning
The most popular language by far in machine learning and related fields is Python,
mainly due to its extensive libraries as well as its ease of use in quickly prototyping
and testing models. Libraries such as numpy for math and matrix operations, pandas for
data storage and processing, and scikit-learn for machine learning (not to mention
all the competing deep learning libraries currently in use) provide essentially all the
functionality needed to quickly and effectively build and develop models, and as a
scripting language, Python is incredibly easy to set up and starting using.

Other generally popular languages include R (familiar to nearly all users coming
from a statistics background) and C++ (for speed). Scala is rising in popularity, proba-
bly because of the immense popularity of the Spark data processing framework, which
is written in Scala and is now one of the most, if not the most, popular “big data”
frameworks in use today.

2. METHOD
2.1. Python
The Python implementation was primarily intended to be a benchmark for both
programming experience and model performance; it is modeled after the standard
scikit-learn abstractions of estimator and transformer classes, though I did not ref-
erence any scikit-learn source code. numpy was the only external library used — it
would have been interesting to also implement a standard-library-only version for tim-
ing benchmarks, but given numpy’s ubiquity, I chose to include it for the sake of realism
and efficiency. All algorithms (scaling, logistic regression, stochastic gradient descent)
were implemented manually, however.

The full implementation consists of a class each for scaling and logistic regression,
as well as a pipeline abstraction for chaining transformations, built on three abstract
base classes.

class LibScaler(baselib.LibTransformer)
class LibLogisticRegression(baselib.LibClassifier, baselib.LibTransformer)
class LibPipeline(baselib.LibTransformer, baselib.LibClassifier)

2.2. Scala
The Scala implementation was centered around a ModelComponent monad structure;
the aim was to compose a workflow of functions (as opposed to the class instances
used in the Python implementation). I used the breeze and cats external libraries for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 S. Chen

math/matrix operations and category theory types, respectively — though I didn’t need
an external Monad type, it helped during development to have the type rules enforced
by another library. All algorithms were again implemented manually.

The scaler and logistic regression classifiers were implemented as functions with
the type signature DenseMatrix[Double] -> ModelComponent[DenseMatrix[Double]].
The central ModelComponent monad was implemented as follows below referencing [6]:

case class ModelComponent[A](data: A, state: Map[String,
DenseVector[Double]])

trait ModelComponentInstances { self =>
type MC[A] = ModelComponent[A]

def flatten[B](xs: MC[MC[B]]): MC[B] = {
ModelComponent(xs.data.data, xs.state ++ xs.data.state) }

implicit val modelComponentInstance: Monad[MC] = new Monad[MC] {
def pure[A](data: A): MC[A] = ModelComponent(data, Map.empty)

override def map[A, B](fa: MC[A])(f: A => B): MC[B] = {
ModelComponent(f(fa.data), fa.state) }

def flatMap[A, B](fa: MC[A])(f: A => MC[B]): MC[B] = {
self.flatten(map(fa)(f)) }

def tailRecM[A, B](a: A)(f: A => MC[Either[A, B]]): MC[B] = {
f(a) match {
case ModelComponent(Left(nextA), _) => tailRecM(nextA)(f)
case ModelComponent(Right(b), bstate) =>

ModelComponent(b, bstate) } }
} }

case object ModelComponent extends ModelComponentInstances

3. RESULTS AND DISCUSSION
3.1. Performance
I used two binary classification datasets — the breast cancer set from scikit-learn
and a much larger credit card fraud set from Kaggle — and evaluated performance of
the Python and Scala implementations of a scaler-logistic regression pipeline/workflow
against the scikit-learn version on a 25%-75% test-train split. The scikit-learn
LogisticRegression was initialized to match my implementation (ex. L2 regulariza-
tion, stochastic gradient descent) in terms of parameters.

Both implementations were effectively as accurate as the benchmark, and for some
reason also non-negligibly faster than the stochastic gradient descent scikit-learn
implementation that should have matched all parameters, including max iterations.
Given that the standard scikit-learn implementation is still much faster as expected,
it’s possible that parameters that didn’t have options to set in scikit-learn (ex. step
size) could account for the difference.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Machine Learning Across Programming Paradigms A:5

Table I. Performance

Model Accuracy (cancer) Time (cancer) Accuracy (credit card) Time (credit card)
sklearn 0.9091 0.0265 0.9989 19.16

sklearn (standard params) 0.9371 0.0198 0.9991 5.942
Python 0.9161 0.0487 0.9983 12.92
Scala 0.9371 0.1029 0.9791 14.29

3.2. Experience
Here, I explain some of the language and environment features that stood out to me in
each language during the development experience.

3.2.1. Setup and environment. For the Python implementation, setting up a virtual en-
vironment and installing packages via pip went smoothly as usual; I’ve always liked
the pip package manager and have rarely run into issues with ex. conflicting environ-
ments. I then, however, spent an inordinate amount of time trying to set up a working
module system, having only previously worked off scripts or in existing codebases;
Python makes it so easy to import files in the same directory that setting up a multi-
directory module system was surprisingly unintuitive. The last environment feature
that stood out was the pdb debugger; I’ve generally taken it for granted after using gdb
in classes, but it stood out here when compared to the difficulty of debugging runtime
errors in Scala.

Scala environment setup was difficult — I chose to use sbt on the command line,
as it’s what I had used in my limited experience, but setting up a standard project
and all its build files and subdirectories felt like it would have been much easier
with an IDE. The abundance of build-related files (build.properties, build.sbt,
Dependencies.scala) that come with a new sbt project were confusing. sbt is also
absurdly slow compared to ex. a C compiler, but I do like the feeling of being able
to compile to catch errors before testing (because runtime debugging in Scala is near
impossible).

3.2.2. Design. In the Python implementation, I worked for the first time with the abc
abstract base class module in the standard library after realizing that standard Python
classes don’t enforce inheritance rules on instantiation (ex. child classes are allowed
to instantiate without implementing any parent class methods) — this was unintu-
itive. There were some more interesting questions when designing the library base
classes: scikit-learn implements transformer and classifier features as mixins (ex.
transformers are instances of BaseEstimator with TransformerMixin, but I chose to
use regular multiple inheritance instead to simplify subclass definition (ex. my trans-
former was just a LibTransformer instance).

Figuring out how to work with monads in Scala took far more time than expected
— it’s hard to understand an extremely abstract concept without anything concrete
in front of you. I think I had the general intuition of composability, chaining transfor-
mations, etc. in mind early on, but it took a while to understand how all that fit into
actual types in code. The abundance of similar-sounding constructs (classes, abstract
classes, traits, case classes, objects, case objects) didn’t help. I did find, however, that
after I had a correctly compiled base structure, it was much easier to add edits and
extensions, and on the whole, my Scala code felt like it formed a more cohesive struc-
ture than my Python implementation. I think because Scala (and other strongly typed
languages) depends so much on the relationships between types, it’s harder to start
working from scratch, but projects are also less liable to fall apart into spaghetti code.
On top of that, being able to have things run correctly on the first try (for the most
part) once compiled was highly enjoyable.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 S. Chen

REFERENCES
Hermann, J., Del Balso, M. 2017. Meet Michelangelo: Ubers Machine Learning Platform.

https://eng.uber.com/michelangelo/.
Simonite, T. 2016. Moores Law Is Dead. Now What? https://www.technologyreview.com/s/601441/moores

-law-is-dead-now-what/.
Turi, D. Category Theory Lecture Notes. http://www.dcs.ed.ac.uk/home/dt/CT/categories.pdf.
Stanford Encyclopedia of Philosophy. 2014. Category Theory. https://plato.stanford.edu/entries/category-

theory/.
Duchi, J. 2016. CS229 Supplemental Lecture Notes. http://cs229.stanford.edu/extra-notes/loss-

functions.pdf.
Yokota, E. 2014. Herding cats. http://eed3si9n.com/herding-cats/making-monads.html

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


