
Implementation and Exploration of Rust-based Graph Library
Rao Zhang

Electrical Engineering Department
Stanford, California

zhangrao@stanford.edu

ABSTRACT
Rust is a safe systems programming language. It introduces the
concept of ownership, used formemorymanagement to prevent seg-
ment fault, resulting from improper memory manipulation. How-
ever, this mechanism to guarantee memory safety may bring about
obstacles for usage of shared memory resources. Graph is such
an example with shared nodes and edges mutually connected to
each other. In this report, the author will explore patterns of Rust
language by iterations on a graph library, discuss several designs
and implementations of the library based on Rust language, and
analyze memory issues caused by graph representations and Rust
memory management strategies.

KEYWORDS
Rust, Graph processing library, Memory management
ACM Reference Format:
Rao Zhang. 2017. Implementation and Exploration of Rust-based Graph
Library. In Proceedings of CS242 (Programming Languages). ACM, Stanford,
CA, USA, Article none, 6 pages. https://doi.org/none

1 BACKGROUND
Graph is a common data structure, pervasively used in various
areas, especially for topology and network science. Social networks,
computer networks, road networks, all of them can be abstracted
to graph representations. A graph can be represented by its nodes
and edges. If there is a direction associated with each edge, this
graph is called directed graph. If there is a weight associated with
each edge, this graph is called weighted graph.

Since graph is ubiquitous in our daily lives, graph libraries are
developed to represent a graph and provide convenient interfaces
to solve problems related to graphs, with different languages. In
this report, the author will focus on the implementations of a graph
library written in Rust language.

Rust is a systems programming language [1]. It is safe, concur-
rent and practical [2]. The Rust system is designed to be memory
safe, and it does not permit null pointers, dangling pointers, or data
races in safe code [3]. Rust introduced a new concept, ownership.
Ownership is Rust’s most unique feature, and it enables Rust to
make memory safety guarantees without needing a garbage collec-
tor [4]. Ownership follows three rules [5]. (1) Each value in Rust has
a variable that’s called its owner. (2) There can only be one owner
at a time. (3) When the owner goes out of scope, the value will be
dropped. Along with these rules, ownership can be only "borrowed"
or "moved", which guarantees the uniqueness of allocated memory

Programming Languages, December 2017, Stanford, CA USA
2017. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceedings
of CS242 (Programming Languages), https://doi.org/none.

for the value. Finally, a borrow checker performed during compile
time eliminates all these memory issues, such as memory leaks.

However, these rules and checks somethings seem too strict,
so that they make this language not so flexible in its applications.
Graph is such a data structure that multiple edges connecting to
one node, which means it is possible that multiple reference shares
the same value in some implementations. In this sense, Rust’s strict
borrow checker makes graph library difficult to handle. This be-
comes the greatest challenge in this project. Hence, the author is
going to explore features of Rust language, practices various graph
implementations with different internal representations and try to
discover memory issues as well as find solutions to these issues.

The rest of this paper is organized as follows. In section 2, the
author will elaborate the iterations of implementations of the graph
library. In each iteration, the features of Rust language and analysis
of memory management issues will be explained, in the context
of design of the graph library. The author will also theorize the
ways to get around such problems. In section 3, experience and
lessons learned during development on usability of Rust language
are documented. In section 4, the conclusion of this report will be
drawn.

2 APPROACHES
The author implements the graph library in an iterative way. He
gradually improves and completes the library during exploration
and practice of the language. In this section, the author will tell his
thoughts of designs or/and solutions to memory issues in chrono-
logical order.

2.1 The First Iteration
As shown in Figure 1, a graph consists of nodes and edges. Each
node has a unique identifier, which is an i32 type value here. Each
edge has a direction, which is uniquely determined by its start node
and finish node.

The first iteration of the graph library is derived from assign-
ment 6 starter code. In the starter code, the graph is a directed
graph without weight, and represented by an adjacent list with the
following data types and structures.

• nodes: HashMap<i32, T>
• edges: HashMap<i32, Vec<i32> >
• count: i32

where "nodes" HashMap maps a node index (i32 type) to node
value (T type), "edges" HashMap maps a node index (i32 type) to a
vector of node indexes (i32 type), simulating an adjacent list. For
each entry in "edges", the key is a start node and the value is a
vector of finish nodes. The node index is the unique identifier for a
node. Newly added node is assigned an index incremented by one
from the previous largest index. Taking into account node removal

https://doi.org/none
https://doi.org/none

Programming Languages, December 2017, Stanford, CA USA Rao Zhang

Figure 1: A sample directed graph.

and edge removal, a counter is needed to keep track of this largest
index, which is "count" field in the adjacent list representation.
Figure 2 shows an example of the internal data structure of this
graph representation.

Figure 2: Internal data structure of the first iteration.

Since the starter code only implements the following methods,
• add_node: add a node
• add_edge: add an edge
• value: get the value of a specific node
• neighbors: get all neighbors’ indexes of a specific node
• connected: check the connectivity between two nodes

which is far away from complete to form a graph library, the author
complemented the library with the following methods,

• remove_node: remove a specific node
• remove_edge: remove a specific edge
• get_nodes: get all nodes’ indexes
• get_edges: get all edges denoted by nodes pair
• clear: clear the graph
• size: get the graph’s size by node
• is_empty: check whether the graph is empty

where remove_node not only removes the node, but also removes
all edges connected to that node. Besides, the author implemented
std::fmt::Debug trait, whichworks togetherwith println!macro
to format the output, showing the internal data in a clear way.

All the work in the first iteration aims to add more convenient
methods and human readable outputs, to make the starter code
more like a graph library.

2.2 The Second Iteration
The second iteration is only a small upgrade on the first iteration. In
the first iteration, "edges" in the graph is represented by a HashMap,
each entry of which is a mapping from node index (i32 type) to a
vector of node indexes (i32 type). Since the complexity of element
look-up, removal operation of a vector is O(n), the author therefore
replaced this vector structure to a HashSet structure, which has

O(1) complexity of accessing and deleting an entry. The entries in
the HashSet is the same as the values in the vector, which are the
finish nodes. Hence, the graph is now represented by an adjacent
list with the following data types and structures.

• nodes: HashMap<i32, T>
• edges: HashMap<i32, HashSet<i32> >
• count: i32

Figure 3 shows an example of the internal data structure of this
graph representation.

Figure 3: Internal data structure of the second iteration.

2.3 The Third Iteration

Figure 4: A sample weighted directed graph.

In the third iteration, the graph is still represented by an adjacent
list, but converted to a weighted graph, with the following data
types and structures. A sample is shown in Fig 4.

• nodes: HashMap<i32, T>
• edges: HashMap<i32, HashMap<i32, i32> >
• count: i32

The difference of internal data structure between the second itera-
tion and the third iteration is that the author associated a weight
to each edge in the graph. The association is implemented by an-
other HashMap, which maps the finish node to a weight (i32 type).
Therefore, as the finish node is known, the weight can be obtained
by looking up the HashMap. An example of this representation is
shown in Fig 5.

Since we have more information associated to the graph, we
can do more interesting things related to the weight. The author
implemented another two methods to play with,

• weight: get the weigh of a specific edge
• dijkstra: find the shortest path between two nodes

which makes the graph library more handy and complete.

Implementation and Exploration of Rust-based Graph Library Programming Languages, December 2017, Stanford, CA USA

Figure 5: Internal data structure of the third iteration.

2.4 The Forth Iteration
The forth iteration has a fundamental change in the internal rep-
resentation of the weighted directed graph. The graph is now rep-
resented by an adjacent matrix, with the following data types and
structures.

• nodes: Vec<i32, T>
• edges: Vec<Vec<i32> >
• count: i32

where each entry is represented by an element in the "edges" matrix.
The value of the element is the weight of that edge. For example,
as shown in Fig 6, there are two edges going out from node 0. They
are from node 0 to node 1 with weigh 10 and from node 0 to node
2 with weight 20, respectively. The adjacent matrix representation

Figure 6: Internal data structure of the fourth iteration.

is as common as the adjacent list for a graph in graph analysis,
however, it is not a good candidate for our graph library, because
its high space and time complexity in the graph processing.

To store such a graph, the "edges" needs O(n2) space in this
representation. If the graph is a sparse graph, which mean the
number of edges is O(n), then the matrix would be a sparse matrix.
In this situation, this representation wastes a lot of space in storing
edges. In fact, most graphs in our lives are sparse graphs. Hence, it
is not a good idea to store graph in this representation.

Besides, this representation also has high time complexity in
graph processing, such as adding or removing a node. The node
addition and removal operation needs to look up the index of the
node in "nodes", and then change the scale of the matrix in "edges",
which requires O(n) operations, is also too expensive to be efficient.

Taking the expensive storage and operations into consideration,
the author rescinded this practice just after implementing two
methods, add_node and add_edge.

2.5 The Fifth Iteration
Until the forth iteration, the author didn’t meet many memory
management issues, because the "nodes" and "edges" in the graph

representation are not so "closely connected". They are either con-
nected by key-value pairs in a HashMap or by index in a vector.
In the fifth iteration, the author decided to make the "nodes" and
"edges" closely mutually connected, which means nodes point to
edges and edges point to nodes. To achieve this target, the author
changed the internal representation. The graph is now represented
by a star representation with the following data types and struc-
tures, as shown in Fig 7.

• nodes: HashMap<String, Rc<RefCell<NodeType> > >
• edges: HashSet<Rc<ArcType> >

Figure 7: Internal data structure of the fifth iteration.

In this representation, a node is uniquely identified by its name, in
a String type. The HashMap "nodes" maps a node’s name to a smart
pointer to a node instance. Each node in the graph is represented
by a NodeType structure, whose internal data contains three fields,

• name: String
• into: HashSet<Rc<ArcType> >
• goto: HashSet<Rc<ArcType> >

where "name" field is the same as the key field of "nodes" HashMap,
"into" field is a HashSet of smart pointers to incoming edge instances
and "goto" field is a HashSet of smart pointers to outgoing edge
instances. The reason why a NodeType instance keeps redundant
"name" information is to provide a shortcut to get its key in the
"nodes" HashMap. When the author was implementing get_nodes
method, he realized that a RefCell is not allowed to implement its
Hash trait, therefore he decided to use node keys to represent a
node, instead. The HashSet "edges" contains smart pointers to edges
in the graph. Each edge in the graph is represented by an ArcType
structure, whose internal data contains three fields, as well,

• weight: i32
• start: Rc<RefCell<NodeType> >
• finish: Rc<RefCell<NodeType> >

where "weight" field is the weight of this edge, "start" field is a smart
pointer to the start node of this edge and "finish" field is a smart
pointer to the finish node of this edge.

Why is a node represented by a smart pointer of Rc<RefCell<T>
> type to a NodeType instance, but an edge represented by a smart
pointer of Rc<T> type to an ArcType instance? Should the smart
pointer’s type be the same? Let’s first explain the difference of
Rc<RefCell<T> > pointer and Rc<T> pointer. Rc<T> pointer enables
multiple immutable accesses to share the samememory resource [6].
This is not a "borrow", but more like an "own". All of these smart
pointers own this memory resource. Once a clone occurs on the
Rc<T> pointer, the reference count is incremented by one. Once all
copies of Rc<T> expire, which means reference count becomes zero,

Programming Languages, December 2017, Stanford, CA USA Rao Zhang

this block of memory resource is released. However, Rc<RefCell<T>
> pointer not only allows multiple immutable accesses to data, but
also permits one "mutable borrow", which means one and only one
of the copies is able to modify the interior data with type T. This
pattern is brought by RefCell<T>, called interior mutability pat-
tern [7]. Additionally, this mutability pattern uses run-time checker
instead of the compile-time checker [7].

Then, let’s analyze the similarity and difference between nodes
and edges. First is similarity. Both of a node and an edge must allow
multiple pointers to share its data, since a node may have multiple
incoming and outgoing edges and an edge is shared by two nodes as
its start and finish. Then is difference. An edge, after its declaration,
will never be changed because its start node and finish node is fixed
and this edge is uniquely determined by these two nodes. However,
a node, after its declaration, should be able to change, because there
may be more edges added to this graph and connected to this node.
In this situation, an edge should maintain immutability and a node
must keep mutability. In consequence, we make use of Rc<T> type
to represent an edge and Rc<Ref<T> > type to represent a node.

According to the above analysis, the author started to implement
the graph library, but stops at add_edge method and he found that it
is impossible to implement this methodwith such data structure and
representations. Let’s look into the issues in an add_edge method.
To better understand what happens in this method, Figure 8 is
shown to illustrate the relationship between nodes and edges.

Figure 8: Relationship between nodes and edges.

As shown in Figure 8, a node and an edge are mutually connected
to each other. Let’s denote them as node N and edge E respectively.
Node N is the start node of edge E. Node N contains a HashSet
of smart pointers to edges, and one of these pointers is pointing
to edge E. Edge E contains two smart pointers to nodes, the start
pointer points to node N. Assume node N is already added into the
graph, and then the author wants to add edge E. First, he creates
edge E with a smart pointer to the start node and another smart
pointer to the finish node. Then, he wants to add the smart pointer,
which points to edge E, to its "goto" field so he mutably borrows
node N and tries to add this pointer. At this time, the program shows
it is panicked at twice mutable borrow. After a careful scrutiny, the
author understands the cause of this panic. Once node N is mutably
borrowed, edge E is mutably borrowed at the same time because
edge E "owns" a pointer to node N’s data. In this sense, edge E can
never be added to node N’s "goto" field.

In this example, we see that a mutable borrow of an instance
makes all other instances, which have a smart pointer to it, mutable

borrowed and cannot be used until the mutable of this instance
expires. The language doesn’t allow us to make a loop with pointers
directly pointing to each other. As we have seen, it is difficult to
make a reference circle in Rust, because the reference count of each
item in the cycle will never reach 0, and the values will never be
dropped [8]. However, is it possible to create reference circles? The
answer is yes, but this may lead to memory leak. In this case, the
way to create a reference circle is to shrink scale of the range of
the RefCell<T>. In other words, we can simply remove the RefCell
wrapper on NodeType and add this RefCell wrapper on the inner
HashSet inside NodeType, as the example described in the Rust
documentation [8]. It is not wise to create reference circles in a
specific implementation, although turning a Rc<T> into a Weak<T>
could circumvent this![8]. Due to the limit of content, the author
does not want to expand the details, he instead decides to break
the circle with another HashMap, which brings about the sixth
iteration.

2.6 The Sixth Iteration
Since the author has known the reason why he cannot form a
reference circle between nodes and edges, the only problem that
remains is to break the circle with an appropriate data structure.
This time, the author decides to apply a HashMap to edges, using
key-valuemapping to achieve his goal. The graph is still represented
by a star representation but with a HashMap of "edges".

• nodes: HashMap<String, Rc<RefCell<NodeType> > >
• edges: HashMap<String, ArcType>

In the HashMap, the key (in String type) generated from the start
node and finish node of the edge, which uniquely determine this
edge. In this representation, there is no smart pointer pointing from
a node to an edge, but a key associated with the edge, so storing only
one copy of edges is enough. The Rc<ArcType> is no longer needed.
Instead, only ArcType is used. Hence, each node is represented by
a NodeType structure with three internal data fields.

• name: String
• into: HashSet<ArcType>
• goto: HashSet<ArcType>

Similarly, each edge in the graph is represented by an ArcType
structure. The only difference is that there is one more "nickname"
field, which is exactly the same as its key in the "edge" HashMap.
This redundancy is the same as a NodeType, to provide a shortcut
to its key in the HashMap.

• nickname: String
• weight: i32
• start: Rc<RefCell<NodeType> >
• finish: Rc<RefCell<NodeType> >

Again, an example of this representation is shown in Figure 9. Two
HashMaps stand for "nodes" and "edges", respectively. After this
modification, let’s look into the implementation of add_edge. Firstly,
the author initialized an edge with two pointers, one pointing to the
start node, the other pointing to the finish node. Then the author
mutably "borrowed" the start node and add the key of that edge into
his "goto" HashSet. This time, the node finds its outgoing edges by
a HashSet of keys in String type, instead of edge pointers, and then
look up the edge instance by its key. Hence, reference circle does

Implementation and Exploration of Rust-based Graph Library Programming Languages, December 2017, Stanford, CA USA

Figure 9: Internal data structure of the sixth iteration.

Figure 10: Relationship between nodes and edges.

not exist in the graph any more. The current relationship between
nodes and edges is shown in Figure 10 Now there is no problem
with reference circles, so the author implemented other methods
in the same way as the third iteration. The graph library is now
equipped with the same interfaces as the third iteration, but in a
different representations and internal data structures.

2.7 Default behavior and Testing
To implement a graph library, the default behavior of improper
operations on the graph should be considered, such as try to add
the same node twice or try to get an nonexistent node. Usually, we
have the following three solutions.

• Throw an exception
• Return an option or a bool value
• Ignore

The first solution is the most strict which will stop the whole pro-
gram. The second one is relatively mild since only improper ma-
nipulation on a returned None type can cause program crash. The
third one is the least strict since it ignores the improper operation
itself. Referring to the default behavior of other graph libraries, the
author developed this graph library in a combined strategy. All
"get" methods return an option to let user determine what to do
next, but all other methods throw exceptions which makes it faster
to discover logic bugs.

In each iteration, the author first made unit tests to make ev-
ery method work as expected, and then created main function to
compile the program to a binary executable and tested it against
valgrind to make sure no memory leak happens.

3 EXPERIENCE AND LESSONS
In this section, the author wants to talk about his experience and
lessons of developing a graph library with Rust as well as some
wired issues he has met, to help other new developers get started
as soon as possible.

The author learns Rust almost from zero except the content cov-
ered in class. Learning a new language always takes time. New
grammar, new collections, new concepts (such as ownership, life-
time and trait) and writing unit tests are all challenges to novice.
Thanks to the detailed documentation of Rust, this becomes not so
terrible. However, some patterns that Rust should behave as other
languages differ from these language, which may bring us more
confusion.

The first is that Rust doesn’t support function overloading. You
cannot overload a function with the same name, but you can imitate
this behavior with trait. Define traits for function input and output
and then implement these traits for intended types or structs, as
suggested in this blog article [9].

The second is one issue that the author has not solved yet. Rust
does not implement and does not allow to implement Hash trait
for RefCell<T: Hash>, even if you have already implemented Hash
trait for T. This behavior is wired because the Hash trait is imple-
mented for Rc<T>. These two smart pointers exhibit inconsistency
in supporting traits. This is the reason why the author implemented
neighbors method with a HashSet of String, but not a HashSet of
nodes, in the fifth and sixth iteration.

The third is about safe behavior that is not supported in compile-
time. We have a mutable variable "var", and a mutable reference "x"
to "var" and then an immutable reference to "x". We want to modify
the value of "var". Let’s read the following code.

let mut var = 5;
let x = &mut var;
let y = &x;
*(*y) += 1;

This paragraph of code does not work. The error message is "as-
signment into an immutable reference". This operation is regarded
unsafe by Rust compiler. The way to make it work is to turn "x"
into mutable and turn "y" into a mutable reference of "x". We have
to make "x" mutable, although we don’t modify "x" itself.

let mut var = 5;
let mut x = &mut var;
let y = &mut x;
*(*y) += 1;

This is the way Rust think safe. In an "unsafe" way, we can use
raw pointers combined with "unsafe" key word to achieve this, for
example,

let mut var= 5;
let x = &mut var as *mut i32;
let y = &x as *const *mut i32;
unsafe{ *(*y) += 1; }

This time "y" references an immutable "x", which seems more rea-
sonable, but this is regarded "unsafe" in Rust. It is said this safe
feature is related to the implementation of Rust, but obviously this
feature makes the language not so flexible. Besides, there is another

Programming Languages, December 2017, Stanford, CA USA Rao Zhang

way to achieve this with Rc<RefCell<T> >, utilizing its interior mu-
tability. The author uses the following code to simulate the above
behavior.
let var = Rc::new(RefCell::new(5));
let x = &var;
let y = &x;
*y.borrow_mut() += 1;

This works but it passes the checker from compile-time to run-time,
still not safe as Rust expects. With the limit of time, the author
is unable to finish exploring the "unsafe" mechanism of nesting
immutable reference and mutable reference, but he thinks that
there is still room to improve. In addition, the above code is assisted
with automatic referencing and de-referencing [10]. Variable "y"
is de-referenced twice to "var" and then calls "borrow_mut" and
de-referneced again to access the value of "var".

Then, the author wants to talk about lifetime issues in Rust. Look
into the simple code below
let mut hashmap = HashMap::new();
let var = "hello";
hashmap.insert(var, 10);
let tmp = hashmap.entry(var).key();

You will get an error after compiling, but what is wrong? The error
message shows that we created a temporary value in the fourth
line and the values is dropped after the semicolon. After carefully
reading Rust documentation, the author understands the reason.
Because "entry" method creates a new Entry type variable and "key"
method only use the reference of this variable, hence "tmp" cannot
lives longer beyond this line. The different behavior of "entry" and
"key" generates this error. The fix is pretty simple, transfer the
ownership to another variable living longer can solve.
let mut hashmap = HashMap::new();
let var = "hello";
hashmap.insert(var, 10);
let tmp1 = hashmap.entry(var).
let tmp2 = tmp1.key();

This example tells us that, we need to clearly know the behavior
of a method, whether it consumes ownership or not, whether it
generates ownership or not, whether it returns a mutable reference
or not. Hence, we need to pay more attention to the ownership
transferring and lifetime expiration during development with Rust.

Finally, the author wants to talk about logs of Rust. Rust is the
most friendly language in the aspect of error message. After the
compile, you can see that the compiler pinpoints your error with
exact lines and character offsets with different marks. What is more
important is that it provides you the detailed reason why your
program fails and sometimes even a suggestion of modification.
This makes the development process becomes smoother without
too much frustrations. This is a great advantage of Rust over other
languages. The disadvantage is you cannot get such detailed infor-
mation, when you pass the checker from compile-time to run-time.
For example, when you use RefCell<T> smart pointer or "unsafe"
key word, everything goes back to C or C++. You have to find the
error by yourself. However, this is still an improvement over other
language, because if you make a mistake and get an error related
to memory safety, you will know that it has to be related to one of

the places that you opted into this unsafety [11]. This significantly
reduces the search range during debugging. As the documentation
suggested, restrain the superpower of unsafe operations, unless
you are confident enough or you have to deal with those low-level
programmings with interfaces of operating systems.

4 CONCLUSION
In this report, the author explored usage of Rust language by it-
erations of implementing a Rust-based graph library. Through six
iterations, the author tried three different graph representations,
adjacent list, adjacent matrix and star representation. In each repre-
sentation, the author made effort to alter internal data types/struc-
tures to discover memory management issues and find solutions
to circumvent them. The author explained in detail the design of
different implementations of the graph library and tested these
implementations in each increment. In addition, the experience ,
lessons and insights obtained from the development is also provided
to people who are unfamiliar with Rust as reference.

5 FUTUREWORK
Based on the work achieved in this project, the author thinks that
the future work should focus on improvements of this graph library.
The first thing to do is to optimize the usage of reference and clone.
Clone is an expansive operation and what the author wants to do
is to use reference as much as possible, and replace the occurrences
of clone as much as possible. This is a good way to performance
improvement. The second thing to do is to refine default behavior of
methods, since current implementation makes use of exceptions to
pinpoint logic bugs. These exceptions are unfriendly to new users
and may let them feel discontinuity during development with this
library. The last thing to do is related to the author’s interest. He
wants to try to make reference circles to truly simulate the behavior
of objects and break the circle with Weak<T> pointers. This should
be an exciting experiment with Rust!

ACKNOWLEDGMENTS
The authorwould like to thank LecturerWill Crichton for delivering
interesting and vibrant introductions to Rust language, and TA John
Wang Clow for giving insightful critiques on the author’s proposal
and helpful feedback on the author’s checkpoint. Thanks for all
teaching staff’s hard working on providing such wonderful charms
of Rust language to the author.

REFERENCES
[1] https://www.rust-lang.org/en-US/
[2] https://www.rust-lang.org/en-US/faq.html
[3] https://doc.rust-lang.org/book/first-edition/unsafe.html
[4] https://doc.rust-lang.org/book/second-edition/ch04-00-understanding-

ownership.html
[5] https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-

ownership.html
[6] https://doc.rust-lang.org/book/second-edition/ch15-04-rc.html
[7] https://doc.rust-lang.org/book/second-edition/ch15-05-interior-

mutability.html#refcellt-and-the-interior-mutability-pattern
[8] https://doc.rust-lang.org/book/second-edition/ch15-06-reference-

cycles.html#reference-cycles-can-leak-memory
[9] https://medium.com/jreem/advanced-rust-using-traits-for-argument-

overloading-c6a6c8ba2e17
[10] https://doc.rust-lang.org/book/second-edition/ch05-03-method-syntax.html
[11] https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html

	Abstract
	1 Background
	2 Approaches
	2.1 The First Iteration
	2.2 The Second Iteration
	2.3 The Third Iteration
	2.4 The Forth Iteration
	2.5 The Fifth Iteration
	2.6 The Sixth Iteration
	2.7 Default behavior and Testing

	3 Experience and lessons
	4 Conclusion
	5 Future work
	Acknowledgments
	References

